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Abstract—The extraction of the glottal volume velocity wave-
form from voiced speech is a well-known example of a sparse
signal recovery problem. Prior approaches have mostly used well-
engineered speech processing or convex L1-optimization methods
to solve the inverse filtering problem. In this paper, we describe
a novel approach to modeling the human vocal tract using
an unsupervised dictionary learning framework. We make the
assumption of an all-pole model of the vocal tract, and derive an
L1 regularized least squares loss function for the all-pole approx-
imation. To evaluate the quality of the extracted glottal volume
velocity waveform, we conduct experiments on real-life speech
datasets, which include vowels and multi-speaker phonetically
balanced utterances. We find that the the unsupervised model
learns meaningful dictionaries of vocal tracts, and the proposed
data-driven unsupervised framework achieves a performance
comparable to the IAIF (Iterative Adaptive Inverse Filtering)
glottal flow extraction approach.

I. INTRODUCTION

Glottal inverse filtering is a very important field in speech
processing, with applications as diverse as speech compres-
sion, synthesis and recognition of paralinguistic attributes such
as emotion and voice quality [1]. The process of inverse
filtering involves an understanding of the speech production
model, particularly the production of voiced sounds. In this
process the glottis shapes a constant airflow input to produce
a train of pulses G(z) during voiced sound generation, which
is called the glottal volume velocity waveform. Periodicities
in the airflow stream are produced by the opening/closing of
the glottis.

When the glottis closes, the glottal volume velocity airflow
resonates in the vocal tracts, leading to voiced sounds being
produced. The source filter model assumes that the sound
source and the vocal tract are independent. The final stage
in speech generation is the impedance L(z) created by the lip
radiation.

The vocal tract is modeled as a linear filter V (z) and the
glottal excitation signal G(z) is estimated from the residual
that is the non-linear part of the speech signal. An assumption
commonly followed in the literature [2] is the all-pole model
of the vocal tract, where the vocal tract V (z) is modeled as :

V (z) =
1

1−∑
P
p=1 apz−p

(1)

The glottal flow excitation can be measured using a laryn-
gograph, however it is possible to separate the source and
the vocal tract filter and estimate the excitation through
a computational approach. This is a difficult deconvolution
problem, for which various methods have been proposed in the
literature [1] [3]. Most of these proposed approaches are well-
engineered, with an additional estimation of the parameters
such as the pitch, glottal opening/closure instants (such as
pitch synchronous IAIF [4]). Additionally, estimation of vocal
tract and glottal flow waveforms are generally done on limited
data such as single frames of speech.

In this paper, we investigate glottal inverse filtering as an un-
supervised learning problem, where the vocal tract parameters,
along with the basis dictionary atoms and excitation signals
are jointly estimated from a large corpus of speech from one
or multiple speakers. Our proposed approach is motivated by
the success of sparse coding and deconvolutional networks,
which have been applied to fields such as feature extraction
for object recognition [5], and image denoising [6].

Our primary research questions discussed in this paper are:
Q1. Is it possible to construct a data-driven unsupervised
learning framework for glottal inverse filtering with minimal
prior assumptions on the speech production model?
Q2. Are the glottal volume velocity waveforms extracted from
the proposed model comparable to those extracted from state-
of-the-art inverse filtering approaches on continuous and real-
life speech data?
Q3. Do vocal tract dictionaries generalize in a speaker-
independent manner across different voice quality categories
such as breathy, modal and tense voices ?
We summarize the remainder of our paper as follows - in
Section II, we discuss prior work, and in Section III we
describe our proposed unsupervised framework for glottal
inverse filtering. We conduct experiments on real-life speech
datasets and evaluate the performance of our approach in
Sections IV and V, concluding the paper in Section VI.

II. RELATED WORK

The classic approach for glottal inverse filtering is LPC
(Linear Predictive Coding) based estimation [7], where
various phases in the glottal excitation, such as glottal
closure and opening instants are estimated from an analysis
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of the LPC residual. Iterative Adaptive Inverse Filtering
(IAIF) [4] was proposed by Alku et al., in which the glottal
excitation waveform is estimated in an iterative filtering
process by first canceling the effects of lip radiation and
estimating a lower-order vocal tract model, after which the
glottal excitation is obtained by inverse filtering with a
higher-order model. Recently, various approaches [8] have
been proposed in which the L1 sparsity of the residual is
optimized directly, based on a linear constraint. Bayesian
methods have also been introduced, such as [9] in which the
block sparsity of the glottal flow is encoded using a prior, and
[10], [11], where Bayesian priors and compressive sensing
are respectively investigated in a TVLP (Time Varying
Linear Prediction) framework. Scherer et al. [12] proposed
to estimate the OQ (open quotient) in the glottal excitation
using an ANN (Artificial Neural Network) and compared
it to other approaches for estimating OQ. Airiksinen et
al. [13] used a DNN (Deep Neural Network) to estimate
the glottal source from robust low-level speech features. In
comparison to our proposed approach none of these methods
discuss inverse filtering in a clustering/dictionary learning
framework where the vocal tract parameters, along with the
glottal excitations are jointly learnt from a large speech corpus.

III. PROPOSED MODEL FOR GLOTTAL INVERSE FILTERING

A. Unsupervised Framework

Our framework follows from the well-known all-pole vocal
tract model with P poles, where x(n) is a speech sample at
time n, {a1,a2, ...,aP} are the vocal tract parameters, w(n) is
the sparse glottal excitation derivative we wish to estimate,
and e(n) is white noise:

x(n) =
P

∑
p=1

apx(n− p)+w(n)+ e(n) (2)

If we follow a vector representation of the speech samples for
a window size of T samples, and assume the quasi-stationary
nature of the vocal tract throughout the frame, then the speech
production can be described by:

y = Xa+w+ e (3)

where y is the vector of samples [x(P+ 1) x(P+ 2) x(P+
3)... x(P+T )], X is the Toeplitz matrix constructed from the
speech samples. In this expression, we have used the property
that a convolution can be represented as multiplication with a
Toeplitz matrix [9]. w and e are vectors representing the sparse
glottal excitation derivative and white noise respectively. If we
consider a collection of N frames, then for the i− th frame:

yi = Xiai +wi + ei (4)

The white noise ei for the i-th frame is modeled by a zero-
mean Gaussian distribution with identity covariance matrix,
thus we have:

yi|Xi,ai,wi ∼N (Xiai +wi;σ
2I) (5)

Due to the spiky nature of the derivative wi for the i-th frame,
we impose a multi-variate Laplacian prior on wi with location
0 and scale b.

wi ∼ Laplace(0,b) (6)

We assume independence of wi, thus we have P(wi|Xi,ai) =
P(wi) and by the chain rule:

P(yi,wi|Xi,ai) = P(yi|Xi,ai,wi) ·P(wi) (7)

Expanding the probability distributions, and collapsing the
parameters σ and b into a sparsity factor λ , we obtain the
NLL (negative log-likelihood) for all frames as:

NLL =
N

∑
i=1
‖yi−Xiai−wi‖2 +λ‖wi‖1 (8)

We also assume that the all-pole coefficients ai are selected
from a combination of K basis vocal tract filters h1,h2, ...,hK,
so that we have ai = ∑

K
j=1 ci jhj = Hci, where H is a matrix

of basis filters. From a probabilistic interpretation of sparse
coding [6], for the entire dataset of N frames we formulate
the L1 constrained loss as follows:

L =
N

∑
i=1
‖yi−XiHci−wi‖2 +λ‖wi‖1 (9)

where λ is a hyper-parameter controlling the amount of
sparsity in the residual. For simplicity we have assumed
a‘winner-takes-all’configuration, where the vocal tract filter
for each frame is contributed to by only one basis filter. This
is enforced by a one-hot encoding scheme in ci for the i-th
frame. If we denote Mi as the cluster to which the i-th frame
belongs, then ci j = 1 when j = Mi, and zero otherwise. While
this assumption greatly aids interpretability, we note that this
model can be extended to a sparse combination of basis filters,
where we can introduce an additional regularization term to
control the sparsity in ci. Training the model corresponds
to an optimization of the loss L over the unknown glottal
excitation derivatives {wi} and the dictionary H, given the
signal information in {yi,Xi} for a training set of N frames.

B. Parameter Learning

Under the ‘winner-takes-all’assumption, the model formu-
lation is similar to the K-means clustering problem, and can
be learnt by an iterative EM (Expectation Maximization) style
algorithm. The training algorithm is presented in Algorithm 1.
We initialize training using random estimates of H and {wi},
and then update all parameters in turn for each iteration. The
membership assignment corresponds to the E-step, and the
estimation of H and {wi} corresponds to the M-step. After the
filterbank and basis memberships for each frame are estimated,
the sparse residual wi for the i-th frame can be estimated in
the L1 regularized LASSO framework [14] using an optimizer
such as LARS (Least-Angle Regression) [15]. We continue
iterating till loss function convergence. In practice we observe
that 3-5 iterations are sufficient for convergence.
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C. Estimation of glottal excitation for test datasets
Model testing is performed by keeping the learnt dictio-

nary in H constant, and then iteratively updating the cluster
memberships and the glottal excitation derivatives {wi} for
all frames of the testing dataset. This procedure is similar to
model training as described in Table 1, with the exception of
dictionary updates. Since wi corresponds to the extracted glot-
tal flow derivative of the i-th testing frame, it is necessary to
compensate for effects of the lip radiation (which is generally
modeled with a differentiator with a zero close to unity). Thus,
we filter the estimated wi for the i-th frame by a single-pole
integrator with a transfer function H(z) = 1

1−0.96z−1 to obtain
the glottal excitation signal.

D. Hyperparameter validation
The unsupervised framework has two hyperparameters: (1)

Dictionary size K and (2) Sparsity factor λ characterizing the
sparsity of the glottal excitation derivative. We employ a vali-
dation based approach to finding the optimal hyperparameters.
Given a dataset, we split it into a speaker-independent training
and validation set. For each K in the set {5,10,15,...,100} and
sparsity λ in {10−1,10−2, ...,10−10}, we train the model, and
evaluate its performance on the validation set. The error metric
used here is the log-spectral distortion between each frame in
the validation set and its estimated spectral envelope [9]. From
the validation experiments, we obtain the best hyperparameter
set as {K = 80,λ = 10−7}, which we shall use in all subse-
quent experiments.

Algorithm 1 Iterative Algorithm for Parameter Training

1: N: Number of frames; K: Size of dictionary
2: T : Frame duration in samples; P: Number of poles
3: yi: Signal vector for i-th frame
4: Xi: Toeplitz data matrix for i-th frame
5: H : [h1h2...hK] Dictionary
6: W : [w1w2...wN] Excitation matrix
7: Initialize Dictionary: H← rand(P,K)
8: Frame memberships: Mi← None, i ∈ {1,2, ...,N}
9: Initialize Clusters: C( j)←{}, j ∈ {1,2, ...,K}

10: Initialize Excitation Matrix: W← zeros(T,N)
11: while loss not converged do
12: 1. Assign to Clusters
13: for i ∈ {1,2, ...,N} do
14: Mi← argmin j ‖yi−Xihj−wi‖
15: C(Mi)←C(Mi)∪{i}
16: end for
17: 2. Update Basis H
18: for j ∈ {1,2, ...,K} do
19: hj← (∑i∈C( j) Xi

T Xi)
−1

∑i∈C( j) Xi
T (yi−wi)

20: end for
21: 3. Update Excitation w
22: for i ∈ {1,2, ...,N} do
23: wi← argminw ‖w+Xihj−yi‖2 +λ‖w‖1
24: end for
25: end while

IV. EXPERIMENTAL SETUP

In this section, we describe the datasets used in our ex-
periments, along with the algorithms with which we have
compared our approach. We have performed experiments not
only on datasets of vowels, but also on phonetically balanced
utterances spoken by multiple speakers. Since the vocal tract
dictionaries are learnt from real-life speech corpuses, we have
not tested our model on synthetic vowel datasets. We have also
split the datasets in a speaker-independent manner, where the
set of speakers for validation/testing are different from training
set speakers. This also facilitates evaluation of the model’s
robustness to unknown speakers and speaking conditions.

A. Datasets

We have selected three datasets for conducting our experi-
ments:
(1) Finnish Vowels Dataset : This dataset consists of record-
ings used in [16] spoken by 6 female and 5 male speakers
aged between 18 and 48 years. Eight Finnish vowels were
spoken across breathy, normal and tense voice qualities. Each
participant repeated the same vowels thrice, producing 792
segments in the dataset. The training set consists of six
speakers (three male, three female) and the validation set
consists of four speakers (two male, two female).
(2) CMU Arctic Dataset [17] : We have selected 1132 ut-
terances of the CMU Arctic dataset spoken by a single male
speaker in US English. We have chosen this dataset for training
purpose to compare the quality of dictionaries learnt on single
speaker data, compared to multiple speaker data.
(3) Cereproc Dataset [18] : We have chosen a subset of
the Cereproc dataset spoken by seven speakers in Received
Pronunciation English. There are 315 utterances in the subset;
where each speaker speaks the same set of 45 carefully
designed phonetically balanced utterances. Data from five
speakers (225 utterances) was chosen as the training set, and
from two remaining speakers (95 utterances) as a validation set
for investigating the generalization properties of the proposed
model.

B. Models

We have compared the performance of our proposed model
with the IAIF (Iterative Adaptive Inverse Filtering) algorithm
proposed in [4]. For all algorithms, we have set the same all-
pole model order of P = 20, and applied a Hanning window
on each frame prior to analysis.

C. Methodology

We have designed experiments to address the primary
research questions posed in this paper. To address question
Q1, we have constructed an unsupervised approach for glottal
inverse filtering in Section III. We further visualize the learnt
dictionary (filterbank), and examine whether the basis filters
can characterize vocal tract formants. We also compare the
spectrum of a test voiced frame of speech with its correspond-
ing LPC spectrum and the all-pole spectrum estimated from
our model. To address research questions Q2 and Q3, thereby
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Fig. 1: Dictionary of basis vocal tract filters (power spectrum) learnt
by the proposed model on Cereproc dataset. The maximum frequency
displayed is 8 KHz for a sampling frequency of 16 KHz

determining whether the model learns meaningful glottal ex-
citations and can generalize to unseen speakers, experiments
comparing the glottal excitation waveforms with IAIF [4]
are also performed. In these experiments we train on single
and multi-speaker datasets (Cereproc train and CMU Arctic),
and validate on the Finnish vowels and Cereproc validation
datasets. Since the Finnish vowels dataset was sampled at
8 KHz, it was necessary to downsample any training corpus
from 16 KHz when testing on the vowels dataset. It has been
reported in the literature that phonation affects the glottal
pulse shape and thus in our study, performance is evaluated
across three categories of phonation: breathy, modal and tense
voices. We are interested to examine if our proposed model
generalizes better to certain voice quality categories.

V. RESULTS AND DISCUSSIONS

A. All-pole filter dictionaries learnt

We performed training over the training set of speech data
for five speakers from the Cereproc dataset with a dictionary
size of K = 20 for visualization purposes. The learnt filters
are presented in Fig. 1. The model is able to learn a compact
set of filters, where sharp peaks in the spectra correspond to
formants, and can thus approximate variations in the vocal
tract across different speakers. It is to be noted that unlike the
TVLP (Time Varying Linear Prediction) approach, where the
filters are defined using fixed templates, we have obtained the
dictionary in a data-driven manner for a large amount of data.
Fig. 2 shows the periodogram of a test vowel frame /i/ from
the CMU Arctic dataset, with the estimated spectral envelopes
estimated by our proposed approach, and LPC. It is interesting
to note that at higher frequencies, the spectral envelope is
almost identical, probably due to a Hanning window being
applied to the frame prior to the all-pole spectral estimation.

B. Glottal excitation waveforms

We consider three sets of training data for training the model
- (1) Cereproc training data (five speakers) (2) CMU Arctic
single speaker dataset and (3) Finnish Vowels dataset. Fig. 3
shows the speech waveforms corresponding to three vowel

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency

70

60

50

40

30

20

10

0

10

20

dB

Signal spectrum
Proposed model spectrum
LPC spectrum

Fig. 2: Spectrum of a sample vowel /i/ from the CMU Arctic dataset,
with envelopes estimated using LPC and our proposed method

frames from Finnish vowels and Cereproc validation dataset,
along with the glottal flow estimated from our proposed
model, and the IAIF approach. From an examination of the
waveforms we observe that the glottal flow extracted in a data-
driven unsupervised approach is comparable to IAIF, where
information only from the local frame samples are utilized.
It is also to be noted that we have enforced the sparsity
constraint on the glottal flow derivative {wi}, so the glottal
flow waveforms are not sparse themselves.

We further evaluate the quality of the extracted glottal
source waveforms by comparing their similarity to the IAIF
estimates in Table I. We choose the following metrics for
measurement: (1) Log-spectral distortion (LSD) [9] and (2)
Pearson’s correlation coefficient (computed over each frame)
and also analyze correlation across three phonation types:
breathy, modal and tense. The mean, median and standard
deviation of each metric are presented in the table for each
dataset and phonation combination. We observe that there is
a high correlation (and consequently low distortion) between
the glottal excitations and the IAIF estimates, particularly
when validated on the Finnish vowel dataset. Correlation is
higher for breathy and modal voices, compared to tense voices.
We hypothesize that this could be related to the degree of
sparsity in the glottal flow derivative for different phonation
types and the model has to be tuned accordingly. It is to
be noted that our main focus is to develop an unsupervised
data-driven framework for glottal inverse filtering, rather than
outperforming existing state-of-the-art approaches.

VI. CONCLUSION

In this paper, we propose an unsupervised learning approach
for glottal inverse filtering, in which the vocal tract filters and
the excitation are jointly estimated in a data-driven fashion.
We also compare the performance of our approach with the
IAIF algorithm, and show that there is a low log-spectral
distortion and high Pearson correlation between glottal source
waveforms estimated by the two approaches, when validated
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(a) Frame denoting start of vowel /a/ from Finnish vowel dataset
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(b) Glottal excitation: proposed model (solid line) and by IAIF (dotted line)
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(c) Frame of vowel /a/ from Cereproc validation dataset
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(d) Glottal excitation: proposed model (solid line) and by IAIF (dotted line)
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(e) Frame of vowel /i/ from Cereproc validation dataset
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(f) Glottal excitation: proposed model (solid line) and by IAIF (dotted line)

Fig. 3: Frames of vowel sounds from the Finnish vowel and Cereproc
validation sets, with estimated glottal flow velocity waveforms from our
proposed model and IAIF

on real-life speech databases. Validation experiments also
show that the learnt dictionaries can generalize to unknown
speakers. The proposed approach can be extended to neural
networks for unsupervised learning, such as autoencoders,
and a dictionary learning framework to learn glottal pulse
descriptors, which could be discriminative for paralinguistic
attributes such as emotion and voice quality.
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