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Abstract—Combining information present in multiple datasets
is one of the key challenges to fully benefit from the increasing
availability of data in a variety of fields. Coupled tensor factoriza-
tion aims to address this challenge by performing a simultaneous
decomposition of different tensors. However, tensor factorization
tends to suffer from a lack of robustness as the number of
components affects the results to a large extent. In this work,
a general framework for coupled tensor factorization is built to
extract reliable components. Results from both individual and
coupled decompositions are compared and divergence measures
are used to adapt the number of components. It results in a joint
decomposition method with (i) a variable number of components,
(ii) shared and unshared components among tensors and (iii)
robust components. Results on simulated data show a better
modelling of the sources composing the datasets and an improved
evaluation of the number of shared sources.

I. INTRODUCTION

The rush for data collection over the past decade has led
to an evolution of the way many datasets are represented.
A flat matrix, limited to two dimensions, is no longer suit-
able in some applications where more complex abstractions
are required. Social networks, biomedical, audio or imaging
datasets, among others, now often have to deal with more
than two dimensions. To better exploit the potential of these
multi-dimensional datasets, higher-order tensors, i.e., multi-
way arrays, have naturally taken over matrices. Taking more
than two dimensions into account makes the analysis of the
tensors both more informative and more challenging than in
the case of matrices.

Tensor factorization (i.e., tensor decomposition) has
emerged as one of the key tools to investigate these high-
dimensional datasets. Generalizing matrix factorization tech-
niques, it decomposes the complex tensors into more basic and
interpretable parts [1]. From a blind source separation point
of view, it can be seen as decomposing a mixture of sources
(i.e., the tensor) into its constituent parts, named components.
These components can be used for various purposes, from
visualization to feature extraction or classification task. The
actual objective is traditionally to find meaningful components
with physical interpretation that are assumed to represent real
sources composing the dataset. Applications that have success-
fully used tensor factorization techniques as a blind source
separation method include audio and speech processing [2],
chemometrics [3] or neuroscience [4].

As a natural extension of individual tensor decomposition,
the problem of decomposing two or more tensors jointly is
of great interest in many applications where more than one
source of information is available. A joint analysis of different
datasets that record similar phenomena has the potential to
draw a more complete picture of the underlying structure of
the data. This coupled tensor factorizations task requires one
or more common dimensions between the two tensors, and
utilizes these similar dimensions to couple the decompositions
with an alternating optimization approach or, more recently,
with an all-at-once joint optimization method [5]. Such a
coupled analysis has already proved to be very insightful in
various fields, from neuroscience [6] to collaborative filter-
ing [7].

Despite its attractiveness, individual tensor factorization
suffers from robustness issues that should be addressed to turn
it into a reliable blind source separation method. Because every
tensor decomposition method is mainly based on the modelling
of as much variance of the dataset as possible, components
can mix different sources composing the dataset to achieve
this goal. This phenomenon is more frequent when many
sources share similarities in one or more dimensions, such
as in neuroscience (i.e., different sources may have common
brain area, occurrence time or frequency band). While this
situation could theoretically be avoided by specifying the right
number of components, the development of efficient methods
to estimate the ideal number of components remains an open
challenge. Hence, components extracted are often inconsistent
and affected to a large extent by the number of components
chosen for the decomposition, altering their interpretation.

Another problem arising when performing coupled tensor
analysis is the presence of both shared and unshared (i.e.,
dataset-specific) sources. This heterogeneity among the tensors
amplifies the problem of mixed sources described above, as
sources can also be mixed across the tensors.

These drawbacks limit the effectiveness of tensor factor-
ization techniques and call for more robust methods. This
work introduces an adaptive coupled tensor decompositions
framework to produce more robust components. In the rest of
this work, all the explanations are given for, but not limited
to, two tensors that can be of different orders with at least one
dimension in common.
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II. METHODS

In its simplest and most common form (i.e. the PARAFAC
decomposition [8]), tensor factorization approximates a tensor
by a sum of components, where each component is modelled
as the product of rank-one tensor, as represented in figure 1.
For a tensor of order n, each component is formed by the

Fig. 1. Representation of a PARAFAC decomposition for a 3rd-order tensor
X with R components. Figure adapted from [9].

outer product of n vectors, or factors, that can be seen as
the signatures of this component in the n dimensions. These
signatures are easy to visualize and can provide valuable
insights into the data. The factors of all the components in
one dimension form the factor matrix for this dimension.

Coupled tensor decompositions addresses the problem of
decomposing simultaneously different tensors that have com-
mon and non-common dimensions, as represented in figure 2.
The underlying is that a source present in different tensors
has identical signatures for the common dimensions in these
tensors. Signatures in non-common dimensions complete the
picture of the source. Hence, factor matrices in dimensions
common to many tensors are derived using these many tensors
while factor matrices in dimensions specific to one tensor are
derived from this single tensor. Various challenges arise when
performing such coupled analysis as the different tensors are
often (i) of different orders, (ii) incomplete (i.e., with missing
data) and (iii) have both shared and unshared sources.

The purpose of this work is to develop a framework to use
the results from both individual and joint decompositions to
extract more consistent components, i.e., components that are
more likely to represent a single source. After a brief overview
of the decomposition method used in section II-A, the pro-
posed robust robust coupled tensor factorizations framework
(i.e., RCTF) is developed in section II-B.

A. Coupled Matrix and Tensor Factorization algorithm

An efficient gradient-based optimization approach to per-
form the coupled decomposition task with tensors of different
orders was introduced by Acar et al. [5]. This method, named
coupled matrix and tensor factorization (i.e., CMTF), tackles
both the challenge of tensors of different orders and of
incomplete data. As an illustration, consider X and Y, a 3rd-
order tensor and a matrix, respectively, with the first dimension
in common. The cost function is defined as:

f(A,B,C,V) =‖ X − JA,B,CK ‖2 + ‖ Y− AV> ‖2 (1)

where A, B, C, V are factor matrices with R columns, i.e.,
R components. Here, JA,B,CKijk =

∑R
`=1Ai`Bj`Ck` is

used to denote the PARAFAC model. In [5], Acar et al.
derived the gradient for these factor matrices, leading to

Fig. 2. Representation of a joint decomposition for a 3rd-order tensor X
and a matrix Y with R components. X and Y have one common dimension,
leading to one factor matrix, composed of the ai’s, common for both X and
Y. Figure adapted from [9].

an efficient gradient-based optimization algorithm for tensor
decomposition. We have performed two modifications to the
classic CMTF algorithm to make it more adapted for the
framework developed.

First, we have changed the algorithm to account for both
shared and unshared sources. The first x components are
decomposed in a joint way, using the classic CMTF algorithm
with both tensors, while the remaining components are derived
using only their corresponding tensor. This modification also
enables to perform a coupled decomposition with a different
number of components for each tensor, which we expect to be
beneficial in many practical situations.

Second, we have added nonnegativity constraints on the
factor matrices extracted. By their additive model which does
not allow subtraction [10], nonnegative decompositions have
proved to be effective to provide naturally sparse and more
meaningful components. In order to make the CMTF algo-
rithm nonnegative, the factor matrices in the cost function 1
are modelled as squared element-wise. The gradient can be
derived in the same way as performed in [5]. Unlike the first
modification, the nonnegativity constraint is not mandatory for
the good behaviour of the algorithm.

B. RCTF Framework

The intuitive idea behind this work is to consider that
a component resulting from an individual decomposition of
a tensor X that properly models a source should stay the
same in a joint decomposition with a tensor Y . A component
from tensor X that differs between the individual and the
joint decompositions is assumed to be (i) affected by another
source of X or by some noise in the individual decomposition,
(ii) wrongly associated with a component of Y in the joint
decomposition or (iii) associated to a component from Y that is
itself affected by another source or some noise. The framework
implemented is described in algorithm 1.

The easiest way to deal with case (ii) is to prevent the
association between non-similar components to happen prior
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to a joint decomposition. This can be done by trading the
traditional random initialization of a joint decomposition for
a more sophisticated initialization method that draws informa-
tion from separate decompositions and specify which compo-
nents are shared and which are tensor-specific. Hence, separate
decompositions of X and Y are performed (lines 4 to 10 in
algorithm 1), with NX and NY components, respectively. An
NX ×NY similarity matrix between components is computed,
based on a similarity measure and the common dimensions
among tensors. Components presenting a similarity larger than
a merging threshold thm are merged (i.e., averaged in the
common dimensions), forming the shared components in the
upcoming joint decomposition. The remaining components of
tensor X (Y) that do not have any corresponding component
in the decomposition of Y (X ) are kept tensor specific, i.e.,
derived only from X (Y) in the joint decomposition, using
the modification brought to CMTF described previously. As a
result, only components which are assumed to mainly model
the same source are derived jointly in the coupled tensor
decomposition (line 13 in algorithm 1), addressing case (ii).

Cases (i) and (iii) can be detected after the joint decom-
position by finding divergences between individual and joint
decompositions (lines 14 to 24 in algorithm 1). In both cases,
the ideal response should be the addition of a component to
model this other source or noise, for tensor X in the case of
(i) and for tensor Y in the case of (iii). To this purpose, results
of the joint decomposition are compared to the results of
previous individual decompositions, using a similarity measure
and a convergence threshold thc. If no significant divergence is
found for the shared components, no issue is detected and the
algorithm stops. Otherwise, an adjustment step is necessary to
ensure a proper modelling (line 28 in algorithm 1).

The sources present in components that did not converge can
be represented in at least two parts: the main source, denoted s,
present in components of both tensors and responsible for the
association of the components, and another source of variation
n responsible for the non convergence. The underlying idea be-
hind the adjustment step is to split the divergent components,
denoted c, in two parts, one shared to correctly model s and
another tensor-specific to model n. To this purpose, another
joint decomposition is performed with a different initialization.
Instead of merging all the identical components, components
that did not converge after the first joint decomposition are
initialized as two shared components a and b, coming from
the individual decompositions of tensor X and Y , respectively.
The dimensions specific to tensor X (Y) are initialized with
the results of the previous joint decomposition for b (a). After
the new joint decomposition, similarity between a and c is
computed and compared to similarity between b and c. If
component a (b) presents a higher similarity, it is assumed to
model s while b (a) is assumed to model n. Hence, the source
responsible for the divergence comes from tensor Y and the
number of components to decompose Y is incremented by
one. Results from the joint decomposition are then used to
initialize separate decompositions and the whole process is
repeated until convergence.

For more details about the implementation, the Matlab code
is available at http://sites.uclouvain.be/absil/2016.07.

It results in both a more reliable and a more versatile
joint decomposition method, with (i) a variable number of
components, (ii) both shared and unshared components and
(iii) robust components that are retrieved in both the individual
and in the joint decompositions.

Algorithm 1 RCTF: Robust Coupled Tensor Factorization
framework
Inputs: X , Y , RX , RY , thm ∈ [0, 1], thc ∈ [0, 1]
Output: KX , KY

1: ite ← 0
2: while convergence = 0 do
3: ite ← ite +1

Individual decompositions :
4: if ite = 1 then
5: FX ← Decompose(X , RX )
6: FY ← Decompose(Y , RY )
7: else
8: FX ← Decompose(X , RX , initialize as KX )
9: FY ← Decompose(Y , RY , initialize as KY )

10: end if
Coupled decomposition :

11: D ← Closeness(FX , FY )
12: L← Link Components(D, thm)
13: (KX , KY )← Decompose((X , Y), (RX , RY ), initialize

as (FX , FY ) with L)
Convergence analysis :

14: n shared converg ← 0
15: shared diverg ← []
16: for k in shared components do
17: dX k ← Distance(FX k, KX k)
18: dY k ← Distance(FY k, KY k)
19: if dX k > thc and dY k > thc then
20: n shared converg ← n shared converg +1
21: else
22: shared diverg ← [shared diverg; k]
23: end if
24: end for

End or Update :
25: if n shared converg = n shared comp then
26: convergence = 1
27: else
28: (KX , KY , RX , RY )← Adjust(KX , KY , RX , RY ,

shared diverg)
29: end if
30: end while

While the resulting algorithm can seem computationally
expensive, the initializations of the decompositions with the
results previously obtained largely decrease this complexity. In
addition, the number of components is evolving along the iter-
ations. Hence, the time complexity of this framework should
not be compared with other standard methods without taking
into account the time required to perform many simulations
with different number of components for the other methods.
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III. RESULTS AND DISCUSSION

Tests are performed on simulated data, and results compared
to state of the art coupled tensor decomposition methods,
i.e., CMTF [5] and its generalization ACMTF [9]. These
experiments are proof-of-concept tests that have the advantage
of providing a ground truth against which to compare methods.
Experiments on real EEG-MEG datasets are planned as further
work.

A. Data Generation

The dataset generated consists in a 3rd-order tensor and
a 4th-order tensor that have two dimensions in common. The
size of all the dimensions is set to 40. Each tensor contains 12
sources, 9 of those being shared across tensors and 3 specific
for each tensor. Sources are formed by randomly generating
signatures in every dimensions and are normed to 1. Signatures
of some components randomly picked are constrained to be
identical in two dimensions, one common to both tensors
and one specific to the 4th-order tensor. Hence, some sources
present similarities in one or two dimensions, modelling the
problem of mixed sources described previously in section I.
Some Gaussian noise is finally added to the dataset while
ensuring the nonnegativity of the data.

B. Coupled tensor decomposition

Simulations are performed for 6, 9 and 12 initial compo-
nents. The performance of our algorithm is evaluated through
the modelling of the sources by the components and com-
puted as cos(angle) = norm(A.B)/(norm(A).norm(B)),
abbreviated as angle in the figure, with A the actual source
and B the component modelling this source. Additionally,
the number of unshared and shared components retrieved is
displayed. For CMTF and ACMTF, a component extracted
is considered unshared when its norm is at least ten times
larger for one tensor than for the other. For our algorithm,
merging and convergence thresholds thm and thc are set to 0.5
and 0.9. No optimization was performed to determine optimal
values for these parameters. The similarity measure used is the
cos(angle) defined previously. The ACMTF algorithm uses a
parameter σ to make the modelling of unshared components by
the algorithm more likely [9]. Tests for ACMTF were repeated
with 4 different values for σ: 10−4, 10−3, 10−2 and 10−1 and
only results for the best value (i.e., 10−3) are presented.

For every simulation, 50 runs were performed. To simplify
the presentation, results from one run are averaged across
the components retrieved. Hence, the ’modelling’ for one
run corresponds to the mean modelling of the components
extracted in this run. All simulations are performed in Matlab.

Results are presented in figures 3 to 5, for CMTF, ACMTF
and our method (RCTF). The histograms show the number of
shared and specific components retrieved with each method,
the density for x components representing the number of
runs with x shared/specific components extracted divided by
the total number of runs. Results show a higher number of
components retrieved with our framework when the number
of components is underestimated and a better evaluation

of the number of shared components when the number of
components is well approximated.

Boxplots show a better modelling of both the shared and
unshared sources with our framework regardless the number of
initial components used. The common dimensions of different
sources lead to components mixing these sources in both
CMTF and ACMTF. Our framework seems to be much more
robust to this problem, while still dependent on the number
of initial components chosen. The modelling of the unshared
sources for CMTF with 6 initial components is not shown as
the number of unshared sources retrieved is too small.

IV. CONCLUSION AND FURTHER WORK

In this work, we have introduced a framework to perform
coupled tensor decompositions based on the method devel-
oped by Acar et al. [5], and have shown its performance
on numerical benchmarks with respect to standard coupled
tensor decompositions methods. These improved performances
originate from both a flexible way to deal with shared and
unshared components and adjustments made across iterations
to extract robust components. This work is a first step towards
more reliable coupled tensor decomposition methods. Further
work will include its validation on real EEG-MEG datasets
the development of a more reliable and faster way to make
the adjustment step in our framework.
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(a) Number of shared components
retrieved

(b) Number of specific components
retrieved

(c) Modelling of the shared and unshared sources

Fig. 3. Results of the simulations with 6 initial components for both tensors.

(a) Number of shared components
retrieved

(b) Number of specific components
retrieved

(c) Modelling of the shared and unshared sources

Fig. 4. Results of the simulations with 9 initial components for both tensors.

(a) Number of shared components
retrieved

(b) Number of specific components
retrieved

(c) Modelling of the shared and unshared sources

Fig. 5. Results of the simulations with 12 initial components for both tensors.
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