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Abstract—Matrix completion is the task of predicting unknown
or missing entries in a data matrix. The estimation of the
missing entries is based on the assumption that the underlying
matrix is a low rank one. Deep learning has evolved as an
efficient tool for feature extraction in many large-scale image
based applications. Exploiting the techniques from both domains,
we propose a novel solution to the problem of simultaneous
classification of actions from multiple test videos with deep
features using matrix completion methods. Learned features from
a convolutional neural network and corresponding labels from
data are concatenated to form a big matrix with unknown or
missing entries in the place of test data labels. Convex rank
minimization algorithms are used to complete this matrix. The
proposed method achieves stable performance even in situations
with more than 50% of features and labels missing.

I. INTRODUCTION

Real world data is rarely perfect or clean. This can be
due to human error, equipment failure, system generated error
etc. This requires learning with missing or incomplete data in
many applications. Missing data leads to missing features. In
supervised learning another issue is the availability of labelled
data. Labelling is manual and laborious for large datasets. With
only some of the data labelled, the problem would be semi-
supervised learning, where a classifier is trained on labelled
and unlabelled training data. We therefore seek a classifier
which is robust to deficiencies in features and labels. To
this end we propose a solution using the matrix completion
framework addressing the issues of missing features and labels
applied to the problem of action recognition. Human action
recognition is useful in assisted living, security surveillance,
human-computer interfaces, patient-monitoring systems etc.
To recognize ongoing activities from an unknown video
is a challenging task due to unavoidable occlusions, view-
point variations of cameras, anthropometric differences and
so on. Despite these issues, past decade has made remarkable
progress in this area [1] [2]. In surveillance applications, it
is required to simultaneously recognize or classify multiple
actions. This was addressed as joint classification of actions
with matrix completion [3]. In that, the missing entries were
only test data labels. The problem when some of the features
missing besides test labels is not addressed. In this paper,
we propose robust joint action classification within matrix
completion setting, dealing with missing features or labels
or both from training data together with unknown test data
labels. In this context we show that learned features from
a convolutional neural network perform better than the state
of the art hand-crafted features. Brief background on matrix

Fig. 1. Proposed approach : A convolutional neural network is trained to learn
class specific features from given training videos. The trained network is used
to extract features X tr and X tst from train and test videos. Label vectors
Y tr corresponding to the training videos are generated. Features and labels
are arranged as shown in Matrix completion framework with zeroes replaced
in the place of unknown entries. Classification is achieved by completing the
matrix using rank minimization techniques.

completion and deep learning is given in Section I-A and
Section I-B.

A. Matrix Completion

Matrix completion (MC) is the problem of estimating un-
known entries of a matrix generated by partial observations
of data [4]. MC is associated with popularly known Netflix
challenge [5] to come up with a recommender system using
highly insufficient observed ratings. The solution to matrix
completion problem relies on the assumption that the under-
lying matrix is a low-rank matrix. If Z is the incomplete matrix
with some observed entries Aij where (i, j) are specified by a
set Ω, then it can be recovered by solving the problem of rank
minimization as shown in Equation (1). The rank function is
non-convex and is difficult to optimize.

minimize rank(Z)

subject to Zij = Aij ∀ (i, j) ∈ Ω
(1)

Replacing the rank function by nuclear norm [6], its convex
equivalent Equation (2) is obtained.

minimize ‖ Z ‖∗
subject to Zij = Aij ∀ (i, j) ∈ Ω

(2)

Rank function is the count of singular values of the matrix
while ‖ ‖∗ is the nuclear norm which is the sum of singular
values. These are analogous to l0 and l1 norms respectively.
Linear classification requires finding a decision boundary
defined by the parameters [WT,b] such that yi = WTxi + b
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Fig. 2. CNN structure in our experiments - It has 3 stages with each stage consisting of convolution, rectification and pooling
layers. The 3 stages are followed by three convolution layers. The output of the last convolution layer is fully connected to activation
units to compute the class scores. CNN is trained by backpropagating the error from the class scores. After training, the output
from the last convolution layer are considered as features.

where (xi,yi) is the feature and label pair from the training
data for i = 1, 2, . . . Ntr. This parameter set is then used for
classifying test data. The matrix formed by the concatenation
of labels and features will be of low rank based on the linear
dependence of labels on features. Transduction classification
with matrix completion was introduced by Goldberg et al
in [7]. Mathematically, let Xtr be the feature matrix with
columns representing each training sample and Ytr be the label
matrix whose columns are labels of the corresponding training
samples. Similarly let Xtst and Ytst be those pertaining to test
data. Then combining all, leads to a low rank matrix, say Z
as shown in (3).

Z =

[
Ytr Ytst

Xtr Xtst

]
⇒

[
Ytr ?
Xtr Xtst

]
(3)

With the completely unknown labels and probably corrupted
or missing training features and corresponding labels, the
matrix Z is incomplete. The classification problem can now
be cast as rank minimization problem as in (2) and can be
solved using techniques for rank minimization. Since features
and labels span different spaces, Equation (2) is further
constrained with least-squares feature loss and logistic label
loss. Following this, matrix completion was applied to multi-
label classification tasks. In [8] and [9], matrix completion is
used for multi-label image classification. This is extended to
handle images with multiple viewpoints in [10]. Also relation
extraction problem of natural texts in [11] is solved using
matrix completion.

B. Deep Learning and Convolutional Neural Networks

A sub-field of machine learning which has gained immense
attention recently is deep learning. Deep learning methods
tend to automatically learn powerful non-linear representations
of the data in a hierarchical manner unlike conventional hand-
crafted methods. These methods have shown to beat the state-
of-the-art in text [12], audio [13] [14] and image applications
[15]. There are generative models such as Deep Belief Nets
(DBNs) which learn features from input in an unsupervised
manner [16] and supervised discriminative models such as
Convolutional Neural Networks (CNNs) [17]. CNNs on large
datasets like Imagenet [18] have shown to outperform than
DBNs. CNNs are more advanced extensions of fully connected
neural networks which learn features from input at multiple

levels in a supervised manner i.e. from labelled data. The
learning process is achieved through online backpropagation
[12] with gradient descent optimization.
The supervised learning of CNNs results in discriminative
features such that they cluster according to the classes. This
makes CNNs well suited for classification and recognition
tasks. A basic CNN is comprised of one or more blocks of
convolution, rectification, pooling, operations. Convolutional
layer consists of a filter bank, with trainable parameters
or weights. Each filter adapts to a specific set of features
from the input in the learning process and the output of the
filter is known as feature map. These feature maps are then
applied to a non-linear operator through rectification layer. The
rectification or Relu is more biologically inspired to mimic
human brain’s neurons’ activity, to fire on certain inputs only.
Pooling is a downsampling operator producing translational
invariance to the features. Typically average or mean pooling
and max pooling is used in classification or recognition tasks.

II. DEEP ACTION CLASSIFICATION WITH MATRIX
COMPLETION

Matrix completion (MC) and deep learning techniques have
been successfully applied to various vision problems dealing
with images. Fusing both techniques, we propose robust clas-
sification of multiple actions, each represented with learned
deep features, within the matrix completion framework. We
focus on multi-class classification of actions from videos
rather than multi-label classification. Figure 1 illustrates our
proposed approach. We formalize the classification problem
as matrix completion problem next. Under the setting where
the unknown entries are only the test labels, the problem can
be formulated as Equation (4) adapted from [9]. Let ZX =
[Xtr Xtst] be the feature sub-matrix, ZY = [Ytr Ytst]
be the label sub-matrix, Z1 = 1T is used to handle bias and
thus Z = [ZY;ZX;Z1]. The parameters µ and λ are positive
weights for better adaptation of features and labels and γ is
a regularizer used to smooth the log loss. For the case where
some of the features of train and test data and some of the
labels of train data are missing, the summations in (5) would
be over the observed entries only. This problem is solved using
Fixed Point Continuation (FPC) method from [19]. Mainly
there are two alternating steps of gradient computation and
shrinkage operation.
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minimize µ‖Z‖∗ + lX(ZX) + λ lY (ZY)

subject to ZX ≥ 0 and Z1 = 1T (4)

where

lX(ZX) =
∑

ij∈ZX

(zij − z0ij)
2

lY (ZY) =
∑

ij∈Ytrain

1

γ
log(1 + exp(−γzijz0ij))

(5)

To speed-up the algorithm, these two steps are iterated until
a specified error tolerance for a sequence of fixed values of
a parameter (µ, nuclear norm weight in this case). For every
parameter value, the initial objective value is the final value
obtained from the previous parameter iteration. The gradient
computation of the matrix is computed in two steps. Since
the loss on features and labels are modelled using different
functions, the gradients for each part i.e. feature part and label
part are computed independently and then combined to get
the gradient of the complete matrix. Matrix completion relies
on the assumption that the underlying matrix is a low rank
matrix implying that either the rows or columns span a low
dimensional subspace. In multi-label classification with matrix
completion as in [7], [9], [10], [11], the correlation between
labels aids the underlying low rank structure. For multi-class
classification, the labels are distinct. In fact if labels are in
{0, 1}, then they are orthogonal. In such cases, the low rank
structure predominantly relies on features. For this reason, we
train a CNN to learn features which are common within a
specific class and distinct from other classes. The trained CNN
will output features from the samples, which will be clustered
according to the classes. We refer to these learned features as
deep features. To extract spatio-temporal features, convolution
and pooling must be 3 dimensional as in [20] and [21].

III. EXPERIMENTS

We evaluate our approach in two ways (1) Compare the
performance of MC classification with deep features from
CNN and with state of the art hand-crafted features (2)
Compare the performance of MC classification with missing
features and labels to linear SVM. We use KTH dataset [22] in
our experiments. Figure 3 shows the snapshot of this dataset.
It is comprised of videos from 6 action classes - boxing, hand-
clapping, handwaving, jogging, running, walking - recorded in
4 scenarios - s1(outdoors), s2(outdoors with scale variation),
s3(outdoors with different clothing), s4(indoors). There are 25
persons performing the actions under each setting. Each class
has around 400 sequences and 2391 sequences on the whole.
As per [22], videos of 16 persons are used for training and
the remaining 9 for testing. For our experiments, the frames
are reduced to 60× 80 from 120× 160 and a sequence of 13
frames is considered. So a video is represented as 60×80×13
spatio-temporal cube. Apart from the resizing, no other pre-
processing like human centric bounding box extraction and
local contrast normalization as in [21] or foreground and
optical flow extraction as in [20] are made in our experiments.

Fig. 3. A snapshot of KTH dataset showing six actions in a row for each of
the four scenarios.

A. CNN training and deep features

The CNN used in this work is shown in Figure 2. This is
comprised of 3 stages of convolution, rectification and pooling
operations. Stage 1 has a filter bank of 96 with the size of
each convolution filter being (3 × 3 × 3). Stage 2 and 3
result in 128 and 256 feature maps respectively with same
size filters. The three stages are followed by two convolution
layers of filter sizes (3 × 3 × 3), (1 × 3 × 3) with 512
and 1024 feature maps. Following which there are two fully
connected layers of 1024 and 6 (for each class of KTH dataset)
neurons. The pooling is max-pooling with a window size is
(2× 2× 1) in all the 3 stages. The convolution stride for all
convolution layers is fixed as 1 spatially and temporally. And
the pooling stride is 2 spatially and 1 temporally. This CNN is
built with pre-defined layers in Matconvnet toolbox [23]. 3D
convolution and pooling layers from [24] which are compatible
with Matconvnet toolbox are adapted for our experiments. The
training parameters weight decay, momentum are set to 0.005
and 0.9 respectively. Initially the learning rate η is chosen
as 1e − 4. For training purposes, we extend the dataset by
including horizontal and vertical flipped data of the original
version. The network is trained on the training data i.e. video
cubes of 16 persons using online backpropagation with weight
sharing and momentum [12]. The training is stopped after 35
epochs. The output from the second last layer 1024 × 1 is
considered as the feature vector representing each video.

B. Dense trajectory features

We also extract dense trajectory feature descriptors proposed
by Wang et.al. in [25]. These are state-of-the-art hand-crafted
features in action recognition. For each video, trajectories are
tracked based on optical flow at densely sampled pixels. For
each trajectory, we compute only motion boundary histogram
(MBH) descriptors. Each descriptor is 192 with 96 in x and
96 in y directions. This is reduced by two using PCA. A
Gaussian Mixture Model (GMM) with K = 256 is learnt
on the PCA reduced descriptors from training data. Each of
these descriptors are fisher-vector encoded using the GMM.
The dimension of this encoded MBH descriptor is 49152. We
have further reduced the dimension with Random Projection
to 3072.
We first construct sub-matrix ZX using the features of train
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Fig. 4. Comparison of CNN performance and MC performance during the
entire training phase of CNN.

data and test data respectively. Training data features are
arranged class-wise from all classes and classification for each
class test data is computed separately to avoid memory issues
with Matlab. We chose binary labels in {0, 1} for each class
with each label being a 6 × 1 binary vector. So we have
ZY = [Ytr Ytst] with zero vectors in the place of Ytst and
Z = [ZY;ZX;Z1].

C. Results

Before doing our comparisons we have checked the perfor-
mance of MC classification during the entire training phase
of CNN. For every 2 epochs, the performance of MC is
recorded and it is observed that MC method closely follows
CNN throughout for different percentages of missing features
and labels. Figure 4 shows the results these as curves labelled
MC 1, MC 2 ,MC 3, MC 4 and MC 5. The case where
only labels of test data are missing is MC 1. To check
the robustness of the MC classification, we create random
masks applied in an overlapping manner to observe only
some percentage of the available data. Using these masks, we
compute Z2, Z3, Z4, Z5 which are obtained by randomly
missing 30%, 50%, 70% and 90% data respectively of the
actual [ZY;ZX]. MC 2 corresponds to Z2, MC 3 corresponds
to Z2 and so on. It is seen that even with 50% missing data,
the recognition rate does not deteriorate much validating the
robustness of the MC method of classification.
Our first experiment justifies the choice of deep features for
MC classification. We test the performance of MC method of
classification with deep features and dense trajectory features.
We construct the matrix Z in the same way as mentioned in the
previous experiment with dense trajectory features from each
video. The results are summarized in Figure 5 showing the
performance of deep features (referred to as Deep feat) and
dense trajectory features (referred to as Dense feat) against
percentage of missing entries. It is clearly seen that the deep
features are more stable than the dense trajectory features in
the context of MC method. With only test labels unknown,
deep features and dense features perform equally well. As the
percentage of the observed data decreases, performance with
dense features degrades faster than deep features.
For our second experiment, a linear SVM is trained separately
for different percentages of the missing data. In this case, it is

Fig. 5. Performance comparison of deep features and dense features with
increasing percentages of missing entries.

Fig. 6. Performance comparison of MC and Linear SVM using deep features
with increasing percentages of missing entries.

only the features which are missing in training the SVM. As
can be seen from Figure 6, without any training MC performs
better than SVM in most cases. The best recognition rate with
our approach is 90.28% where we jointly classify multiple
test samples in a class simultaneously. This is comparable
state of the art of 92.17% in [21] or 90.20% in [20] on the
same dataset where CNN features are used. But we have not
used any further training as in [21] where a recurrent neural
network is trained on features from CNN or used any hand
crafted inputs as in [20] where the CNN is trained on image
gradients, optical flow along with input frames.

IV. CONCLUSION

In this paper we proposed matrix completion as classifi-
cation tool with deep features from a convolutional neural
network. From the experiments it is observed that the perfor-
mance of MC with deep features is more consistent than dense
features. The performance deteriorates only under extreme
conditions where more than 70% of the data is missing. This
proves that the data matrix with deep features preserves the
low-rank structure. In future, our work is directed towards
(1) learning features from more deeper architectures so as to
improve the recognition rate in matrix completion scenario
and (2) validate on more complicated datasets like Youtube
and UCF.
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