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Abstract— We discuss Least Squares (LS) image estimation
for large data in the presence of electronic noise and drift.
We introduce a data model where, in addition to the electronic
noise and drift, also an additional type of noise, termed pixel
noise, is considered. This noise arises when the sampling does
not take place on a regular grid and may bias the estimate if
not accounted for. Based on the model, we present an efficient
Alternating Least Squares (ALS) algorithm, producing the LS
image estimate. Finally, we apply the ALS to the data of the
Photodetector Array Camera and Spectrometer (PACS), which
is an infrared photometer onboard the European Space Agency
(ESA) Herschel space telescope. In this context, we discuss the
ALS implementation and complexity and present an example of
the results.

I. INTRODUCTION

We consider an acquisition instrument where the image to

be acquired is scanned by one or more sensors. During the

scan, each sensor’s output is sampled at regular times, to

produce a sequence of readouts which is called a time-series.

Examples of such instruments include biomedical, e.g. [1],

[2], [3], and astrophysical, e.g. [4], [5], imaging systems. The

image has to be estimated from the time-series but this task

is complicated by a variety of disturbances, depending on the

specific system. Moreover, the data volume produced by mod-

ern instruments may be huge, which makes the implementation

difficult and calls for efficient estimation algorithms.

In this paper, we discuss the estimation problem for large

data in the presence of two different disturbances. The first one

is the ubiquitous additive noise, due to the readout electronics.

The second one is a drift, causing a slowly time varying

deviation of the time-series from the baseline level, which

affects several practical instruments, e.g. [3], [5]. In particular,

we extend a previous work on the topic, namely [6]. In that

paper, a data model accounting for the drift was presented

and an efficient Alternating Least Squares (ALS) estimation

method was described. However, as we show later, the model

of [6] suffers from an accuracy loss which may bias the

estimate. Therefore, we propose an improved model, where

the accuracy loss is compensated by introducing an additional

type of noise, termed pixel noise, which was not accounted

for in [6]. Moreover, we extend the ALS algorithm to the new

model. Finally, we consider the application to the data of the

Photodetector Array Camera and Spectrometer (PACS) [5],

which is an infrared photometer onboard the European Space

Agency (ESA) Herschel space telescope. In this context, we

discuss the ALS implementation and complexity and present

an example of the results.

The paper is organized as follows. In section II we introduce

some general image estimation concepts. In section III we

summarize the data model of [6] and the ALS algorithm. In

section IV we improve the data model by considering the pixel

noise. In section V we extend the ALS algorithm. In section

VI we describe the PACS data. In section VII we discuss the

implementation of the ALS and its computational complexity.

In section VIII we present an example of the results. In section

IX we give the conclusions.

Notation. We use lowercase letters to denote vectors and

uppercase letters to denote matrices. We use ℜN do denote

the set of the column vectors of N elements and ℜN×M to

denote the set of the matrices with N rows and M columns.

We use I to denote the identity matrix. We use a superscript

T to denote matrix or vector transposition, e.g. AT . We use

E{.} to denote expectation.

II. LS IMAGE ESTIMATION IN THE PRESENCE OF NOISE

Consider the acquisition instrument sketched in figure 1.

The image to be acquired is assumed to be band-limited1 and

is represented by Nm pixels. The image is scanned by a sensor,

the output of which is sampled at frequency fs. The dashed

line represents the scan trajectory and the circles indicate

the sampling points. The instrument’s output is constituted

by a sequence of Nd readouts, termed a time-series, and

the corresponding pointing information, giving the sampling

coordinates of each readout. By assuming that the instrument

is linear, each readout is a linear combination of the pixels.

Thus, by stacking the pixels into an image vector m ∈ ℜNm

and the readouts into a data vector d ∈ ℜNd , we can write

d = Pm+ n = s+ n (1)

where P ∈ ℜNd×Nm is a full-rank matrix, termed the pointing

matrix, which depends on the sensor and on the observation

protocol and is better discussed in section IV, n ∈ ℜNd is

a random electronic noise vector, accounting for the noise

injected by the electronics, and we introduced the signal vector

s = Pm, representing the ideal, noise-less output. We assume

that Nd >> Nm, i.e. that there is redundancy in the data,

1This is the image seen at the output of the instrument’s analog front-end,
after the convolution with a band-limited Point Spread Function (PSF).
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Fig. 1. Sketch of the acquisition system. The grid represents the pixels of
the image to be acquired. The sensor is depicted as a stylised camera. The
sensor pointing is moved along the scan trajectory, represented by the dashed
line. At regular times, the sensor output is sampled: the first two samplings
are indicated by the dotted arrows; the sampling points are represented by the
circles. The readouts are orderly stored in the data vector, as indicated by the
continuous arrows.

as needed to combat the noise. Moreover, we assume that the

noise vector is obtained by sampling a zero mean noise process

and denote the noise covariance matrix by N = E{nnT }.

Given the data model of equation (1), we consider the

problem of producing an estimate of m knowing d, P and

the statistics of n. This is a classical problem having several

established solutions. An important one is based on Gener-

alised Least Squares (GLS) and is

m̄ = (PTN−1P )−1PTN−1d. (2)

The latter is the unbiased linear estimate with the minimum

variance and, when the noise is Gaussian, it is the Maximum

Likelihood (ML) estimate, e.g. [7].

When the electronic noise is stationary white noise, which

we will assume from now on, the estimate is simpler. In this

case, the covariance matrix is a scaled identity matrix, namely

N = σ2I where σ2 is the noise variance, and the GLS estimate

reduces to the Least Squares (LS) estimate, given by

m̄ = (PTP )−1PT d, (3)

where the matrix (PTP )−1PT is known as the pseudo-inverse

of P .

Practical instruments are usually constituted by an array of

sensors and not by a single one. Each sensor produces a time-

series, with corresponding pointing matrix and noise vector. In

this case, the model of equation (1) can still be used, together

with the estimates of equation (2) and (3), assuming that d is

obtained by stacking the time-series, n by stacking the noise

vectors and P by stacking the pointing matrices.

III. LS IMAGE ESTIMATION IN THE PRESENCE OF DRIFT

An additional disturbance which may affect the time-series

is a drift, causing the readouts to depart from the baseline

level. The drift is slowly varying and can be modeled as a

function depending on a few parameters. In order to include

the drift, the data model of equation (1) can be extended as

follows

d = Pm+Da+ n (4)

where D ∈ ℜNd×Na is a full-rank matrix, termed the drift

matrix, and a ∈ ℜNa is a coefficients vector. As we see, in the

latter model, the drift is represented as a vector Da which is a

linear combination of the columns of the D matrix, with vector

a giving the Na coefficients. By properly selecting the matrix,

several drift types can be modeled, for example polynomial [6]

or low-pass [8]. In all cases of interest Nm >> Na.

Given the data model of equation (4), we consider the

problem of producing an estimate of m and a, knowing d,

P , D and the statistics of n. This problem has been analysed

in [6], where it has been shown that, in white and stationary

noise, the LS estimates can be obtained efficiently, by using

an algorithm based on Alternating Least Squares (ALS).

In order to derive the ALS algorithm note that, by assuming

that the coefficients vector is known and by introducing δ =
d − Da, which is the data vector depurated from the drift,

equation (4) yields δ = Pm + n, which is a standard LS

problem, with solution

m̄ = (PTP )−1PT δ.

Similarly, if the image vector is given, by introducing η =
d − Pm, which is the data vector depurated from the signal,

equation (4) yields η = Da + n, which is a standard LS

problem with solution

ā = (DTD)−1DT η.

Based on the last equations, the ALS algorithm iteratively

solves the two problems, using the current estimates of the

image and of the coefficients to form the vectors δ and η.

Specifically, the ALS algorithm amounts at the following steps

1. Initialise δ = d. Repeat steps 2-5 till convergence

2. Estimate image: m̄ = (PTP )−1PT δ.

3. Remove signal: η = δ − Pm̄.

4. Estimate coefficients: α = (DTD)−1DT η.

5. Remove drift: δ = δ −Dα.

In [6], it has been shown that the algorithm converges and that

the vector m̄ tends to the LS image estimate. Moreover, the LS

estimate for the coefficients can be obtained by accumulating

the vector α across the iterations.

IV. HARD POINTING AND PIXEL NOISE

We now discuss two ways of selecting the pointing matrix,

which we refer to as soft- and hard-pointing. To describe

soft-pointing note that the vector m hosts the values of the

image at the pixels’ center. Then, since the image is band-

limited and assuming that the pixel size is small enough, the

Sampling Theorem says that the value of the image at any

point can be expressed as a linear combination of the elements

of vector m. Using this fact, the soft-pointing matrix P can

be formed by placing on its k-th row the coefficients of the

linear combination for the sampling point of the k-th readout.

In general, the soft-pointing matrix P is a full matrix, with

no zero elements. Handling this matrix, e.g. computing its

pseudo-inverse, is heavy as soon the data size is not trivial. To
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circumvent this problem, we make the simplifying assumption

that value of each readout is simply equal to the value of

the center of the pixel where the readout falls. Using this

approximation, a hard-pointing matrix P can be formed, such

that the element on the k-th row and i-th column is one if the

k-th readout was taken in the i-th pixel and is zero otherwise.

The hard-pointing matrix is a sparse and binary matrix,

all zero except for Nd elements which are one. Clearly, it

is much simpler to handle than the soft one. For example,

it can be efficiently stored. Moreover, the LS estimate of

equation (3) is simply the image obtained by averaging the

values of the readuts falling into each pixel, as is easy to

check. Furthermore, the multiplication of a vector with the

matrix, e.g. Pm, can be computed with just Nd memory access

operations. For these reasons, hard-pointing is invariably used

in practical systems.

The drawback of hard-pointing is that the data models

become approximate. In practice, the accuracy loss is tolerable,

at least as long as the pixel size is smaller than the instrument

Point Spread Function (PSF). However, as we see in section

VIII, in some cases the approximation is not adequate and can

seriously bias the estimates. Fortunately, we can modify the

data models in order to retain the simplicity of hard-pointing

and restore accuracy. Specifically, we may assume that each

readout is affected by an additional error, due to the hard-

pointing approximation, given by the difference of the image

value at the sampling point and the image value at the pixel

center. This error is conveniently modeled as an additional

form of random noise, which we term pixel noise. Then, by

representing the pixel noise as a vector x ∈ ℜNd , we simply

rewrite the data model of equation (1) as

d = Pm+ n+ x, (5)

and the data model of (4) as

d = Pm+Da+ n+ x. (6)

In order to use the latter models we need to investigate

the statistics of the pixel noise. As a general comment, note

that the pixel noise depends on the image morphology: for

example, where the image is flat or slowly varying, the pixel

noise is absent or negligible; on the contrary, a strong pixel

noise is expected where the image has gradients and fast

variations. Moreover, it is reasonable to assume that the pixel

noise affecting one redaout is statistically independent of the

pixel noise affecting the other readouts. Furthermore, we can

assume that the pixel noise is zero mean. The latter two facts

imply that the covariance matrix of the pixel noise, denoted by

X = E{xxT }, is diagonal. An additional plausible assumption

is that all the readouts falling into the same pixel experience

a pixel noise with the same variance. Therefore, the diagonal

entries of X corresponding to the same pixel are equal. Finally,

we can assume that the pixel noise is statistically independent

of the electronic noise. Therefore, the covariance matrix of the

total noise, denoted by C = E{(n+x)(n+x)T }, is simply the

sum of the two covariances, i.e. C = N +X . Thus, when the

electronic noise is white and stationary, we have C = σ2I+X ,

which is a diagonal matrix. Based on these facts, it is possible

to estimate the pixel noise covariance matrix directly from the

data vector, as better discussed in section VI.

V. ESTIMATION IN THE PRESENCE OF PIXEL NOISE

In this section, we discuss the GLS estimates and the ALS

algorithm for the new models. Consider first the model of

equation (5). The GLS estimate can be obtained by using (2)

with N replaced by C, the total noise covariance matrix, and

is

m̄ = (PTC−1P )−1PTC−1d. (7)

In general, the estimate is difficult to compute, as discussed in

[9]. However, when the electronic noise is white and stationary,

it is not difficult to show that the latter equation reduces to the

standard LS estimate of equation (3). This is due to the fact

that all the readouts falling in the same pixel experience the

same pixel noise variance and are therefore given the same

weight in the estimation.

Consider now the model of equation (6). The GLS estimate

can be obtained by extending the ALS algorithm. In particular,

we have to update the image and coefficients estimate of steps

2 and 4. However, assuming that the electronic noise is white,

we have just seen that the image estimate coincides with

the LS one. Therefore, step 2 does not need to be changed.

Concerning the coefficients, step 4 has to be updated as follows

4a. Estimate coefficients: α = (DTC−1D)−1DTC−1η.

With the latter modification, we obtain a new algorithm,

which will be denoted by ALS-X. The ALS-X converges and

produces the GLS image estimate: the proof can be obtained

by repeating the derivation of [6]. In the next sections, we

apply the ALS-X to the data of the PACS instrument.

VI. PACS DATA

The Photodetector Array Camera and Spectrometer (PACS)

[5] is an infrared instrument onboard the ESA’s Herschel

satellite. The PACS photometer consists of two arrays of

bolometers. The first one operates in the 70 µm (blue) or

in the 100 µm (green) band, the second one in the 160 µm

(red) band. The field of view is approximately 45 squared

arcsec, but a typical photometric observation covers a much

larger sky area, up to some square degrees wide. To observe

the area, the telescope is moved along a set of parallel scan

lines, covering the area. During the scan, the bolometers are

sampled at regular times, producing a sequence of readouts

for each bolometer, i.e. a time-series, which is also called a

timeline in the PACS jargon. Redundancy is guaranteed by

scanning the area twice, along two orthogonal directions. The

timelines, together with the corresponding pointing informa-

tion, constitute the observation raw output and are collectively

referred as the Time Ordered Data (TOD). A typical 70 µm

TOD is constituted by Nt ≈ 4000 timelines, with a total of

Nd ≈ 109 readouts; the image has Nm ≈ 107 pixels.
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The PACS timelines are affected by noise and drift2. The

noise is injected by the readout electronics and is typically

modeled as a zero-mean, stationary Gaussian process [5]. The

noise covariance matrix is dictated by the noise spectrum,

which is the sum of two terms, namely a white noise with

flat spectrum Nw(f) = N0 plus a correlated noise, also called

the 1/f noise, with spectrum Nc(f) = (f0/f)
ǫN0 where f0

is called the knee frequency and ǫ the frequency exponent.

The drift is due to thermal variations on the focal plane and

is well modeled as a polynomial curve of low order.

Concerning the data model, soft-pointing is not an option,

due to the huge size of the data. Therefore we use hard-

pointing and exploit the model of equation (6). The pointing

matrix P is easy to derive, from the pointing information. For

the drift, we assume a third order polynomial, depending on

Np = 4 coefficients. The corresponding drift matrix, D, is a

block Vandermonde matrix [6] with Na = NpNt columns. For

the electronic noise, we neglect the 1/f part and assume pure

white noise: this is an approximation which makes the ALS-

X algorithm directly applicable; the impact on the estimation

quality is better discussed in the next section. Finally, the drift

covariance matrix, X , can be estimated as follows: first, for

all the pixels, we compute the variance of the corresponding

readouts; next, if the k-th readout was taken in a pixel having

variance σ2

p, we set the k-th diagonal element of X to σ2

p. This

procedure is simple and normally produces satisfactory results.

However, the estimate is biased, because the variance does not

depend on the pixel noise only, but is affected by the electronic

noise and the drift too. A better estimation procedure, capable

of disentangling the electronic and pixel noise, is described in

[9].

VII. APPLICATION OF ALS-X TO PACS DATA

We discuss the ALS-X implementation and complexity.

Thanks to the hard-pointing matrix, steps 2 and 3 are simple to

implement. In particular, as we mentioned, the image estimate

of step 2 is just the average of the readouts of vector δ in

each pixel and requires Nd additions and Nm divisions to be

computed. Similarly, the computation of the η vector requires

Nd memory access and subtractions.

Concerning the coefficients estimation of step 4a, we

note that, since the drift matrix D is block Vandermonde

and the noise covariance matrix C is diagonal, the matrix

(DTC−1D)−1 is block diagonal with Nt blocks of size

Np × Np and can be directly computed and stored before

the iterations begin. During the iterations, in step 4a, the

data vector η is multiplied by C−1, which is simple to

do, since C is diagonal. The result is next multiplied by

(DTC1−D)−1DT , which is simple to do, thanks to the

structure of D: in practice this operation amounts at separately

fitting each timeline to a polynomial and can be implemented

with O(NpNd) multiply and add operations. Finally, step 5

amounts at evaluating a polynomial for each timeline and can

2The timelines are affected by other impairments too, like offsets, satu-
rations, glitches and jumps. We assume that these impairments have been
removed in a prior stage or are negligible.

Fig. 2. The LS estimate for Ceres. Note the background noise. Note that
the upper and lower edges are at different levels, because of the drift.

Fig. 3. The variance image, used to estimate the pixel noise covariance
matrix. Note the strong pixel noise affecting the Ceres body.

be realised with O(NpNd) multiply and add operations. In

summary, the complexity of one iteration is dominated by steps

4a and 5 and is O(NpNd). In all our experiments, convergence

was achieved in less than 10 iterations.

As a final comment, recall that we have neglected the

1/f noise affecting the PACS timelines. As a result, the

ALS-X estimates are sub-optimal and better estimates could

be obtained. In particular, we should modify the ALS in

order to account for the 1/f noise, which, in principle, is

not difficult3. However, the computational complexity would

become prohibitive. Luckily, in practice, the problem is serious

for the image estimate only, while the drift estimate is usually

accurate. In fact, the drift depends on a few parameters and the

redundancy is normally so high that the estimate is accurate

even when the noise is not white. Based on this observation,

we can use the ALS-X to estimate the drift and subtract it

from the data vector, to produce an updated data vector which

is, ideally, free of drift. Next, in a separate step, we estimate

the image from the updated data vector, properly accounting

for the 1/f noise, using, for example, the GLS procedure

described in [10]. In other words, for PACS data, the ALS-

X is used as a pre-processing step, in order to estimate and

remove the drift. It was verified that this approach yields nearly

optimal results [6].

3Just use the GLS image estimate of equation ( 7) in step 2.
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Fig. 4. The ALS estimate for Ceres. Note the strong distortion centered on
the Ceres body, due to the pixel noise.

Fig. 5. The ALS-X estimate. Note the absence of distortion. With respect
to the LS estimate, the background noise is reduced and the edges level is
equalised.

VIII. RESULTS

The ALS-X was integrated into the Unimap software4

[10] and in this section we present the results obtained by

processing two observations of the Ceres asteroid, in the red

band. Initially, we neglect the drift and apply the model of

equation (1), with hard-pointing and stationary white noise.

The corresponding image estimate is the LS one, of equation

(3), and is shown in figure 2. We see that there is noise in

the background, which is due to the drift and to the electronic

noise. We also see that the upper and lower edges of the image

are at different levels, which is due to the drift.

In figure 3 we show the image of the pixels variance, which

is used to estimate the pixel noise covariance matrix. The sharp

peak in the center corresponds to the Ceres body and indicates

a strong pixel noise. In the rest of the image, since the signal

is negligible, the pixel noise is absent and the variance is due

to the drift and the electronic noise.

We now apply model (4) with hard-pointing, thereby ac-

counting for the drift but not for the pixel noise. The corre-

sponding image estimate is obtained by exploiting the ALS

algorithm and is shown in figure 4. Observing the figure

we immediately see the detrimental effect of the pixel noise,

which inflicts a strong distortion, taking the form of a cross

centered on the Ceres body. In this case, the ALS severely

distorts the image. However, it should be noted that we

4Since release 6.2. Previous releases used the ALS.

selected a limiting case, where the pixel noise is particularly

strong. Usually the distortion is less pronounced.

Finally, we apply model (6) with hard-pointing, thereby

accounting for both the drift and the pixel noise. The corre-

sponding image estimate is obtained by exploiting the ALS-X

algorithm and is shown in figure 5. Observing the figure we

see that no distortion is introduced. Moreover, the background

is less noisy and the level of the image edges is equalised,

indicating that the drift has been successfully removed.

To conclude, we mention that we compared the ALS and

ALS-X on a huge database, including both true and simulated

data. The test campaign confirmed the facts just highlighted.

Specifically, whenever the image has a significative signal

component, the ALS is affected by a distortion which is absent

in the ALS-X image.

IX. CONCLUSION

We discussed LS image estimation in the presence of elec-

tronic noise and drift. We introduced a data model accounting

for the drift and discussed two ways of handling the pointing

information, namely soft- and hard-pointing. Hard-pointing

greatly simplifies the image estimation but is approximate

and may distort the image. Therefore, we extended the model

by considering and additional form of noise, the pixel noise,

which arise when hard-pointing is used. We discussed the

LS estimation problem for the new model and presented an

efficient way to solve it, namely the ALS-X algorithm. Finally,

we applied the ALS-X to the data of the PACS instrument,

discussing its implementation and complexity and presenting

an example of the results.
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