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Abstract—Massive MIMO systems employing hundreds of
antennas at the base station (BS) are considered a breakthrough
technology to provide users with high data rates. However, large
number of antennas demands memories of large size which are
prone to faults due to current aggressive technology downscaling.
This paper introduces a novel nonlinear minimum mean square
error (NMMSE) based detection algorithm that takes memory
errors into account. The proposed detection method is able to
handle multiple memory errors with low computational over-
head. Simulation reports that the proposed solution significantly
reduces the impact of multiple memory errors on the bit error
rate (BER).

I. INTRODUCTION

Massive MIMO systems have recently gained attention as
potential means to improve spectral efficiency, link quality and
coverage compared to contemporary small-scale MIMO [1].
This is achieved by employing hundreds of antennas at the BS,
simultaneously serving tens of users. The improvements come
at the cost of the computational complexity increase at the BS.
Compared to small-scale MIMO, which usually employs up to
4 antennas at both ends of the link, massive MIMO detection
has to process data from tens of users received by hundreds of
antennas. Hence, optimal maximum-likelihood (ML) detection
like Sphere decoding is not applicable due to its exponential
complexity increase in number of antennas [2]. Therefore, it
has to be resorted to linear methods or to quasi-ML methods
that build up on them [3].

Even with linear detection the actual implementation is
not straightforward due to large number of antennas [4],
[5]. Continuous technology downscaling is expected to allow
implementation of such complex receiver designs. At the same
time, this downscaling denies the assumption of deterministic
hardware operation [6]. The underlying hardware is subjected
to process variations due to radiation effects [7] or voltage
over-scaling [8].

It has been shown that the traditional small-scale MIMO
receivers are memory dominated, as different buffering mem-
ories occupy up to 50% of chip area [9]. The authors of [10]
introduced the statistical model that combines the effect of
memory errors and the channel noise. Based on this model
a memory error resilient breadth-first tree search detector
that represents the modification of the standard algorithm,
taking the knowledge of memory errors into account, has been
proposed [11].

In massive MIMO uplink this memory dominance is even
more pronounced due to much larger system size. The de-
veloped modified algorithm in [11] is suited for traditional
small-scale MIMO systems. Massive MIMO systems have
not yet been addressed. The authors of [10], [11] allow a
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Fig. 1: MIMO receiver with faulty buffer memory

simplifying assumption of the receive vector having a single
element affected by a single bit flip. This assumption holds in
small-scale MIMO, but not in massive MIMO systems due to
much larger memory sizes.

This paper introduces a novel memory error resilient
NMMSE-based detection algorithm for memory dominated
massive MIMO uplink. The algorithm builds up on the lin-
ear MMSE detection with moderate additional computational
effort. The single-element single-bit flip assumption is relaxed,
and the proposed solution targets the multiple-element single-
flip scenario. The simulation results show that even for high
memory error rates, the proposed algorithm is able to signifi-
cantly reduce the impact of the memory errors on the overall
receiver performance in terms of BER.

The rest of this paper is organized as follows: the statistical
memory error model is outlined in Sec. II, Sec. III intro-
duces the proposed memory error resilient detection algorithm,
Sec. IV provides simulation results and Sec. V concludes the
paper.

II. MEMORY ERROR MODEL

Consider the uplink of a massive MIMO system. The
receiver side is equipped with Mr ≥ 100 receive antennas.
The real-valued system model is given as

y = Hx + n (1)

where y is the receive symbol vector, x is the transmit symbol
vector, H is the channel matrix, assumed to be known at
the receiver, and n is the AWGN vector with zero mean and
covariance σ2

nI.
The receive symbol vector is stored in a buffering memory

prior to detection as illustrated in Fig. 1. Since the faulty
memory may introduce errors, the receive vector after the
memory is denoted ȳ. The authors in [10] introduced a
statistical model that describes the distribution of ȳ after the
faulty buffering memory.

The model proposed in [10] is reviewed briefly. The induced
error due to voltage over-scaling is modeled as a spatially
uniformly distributed random variable where the probability
of failure, Pe(Vdd), for each cell in the memory is the same
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for a fixed supply voltage, Vdd, and linearly increases in the
logarithmic domain with reduction of the supply voltage [12].

The receive symbols are stored in the buffering memory in
fixed point representation. The fixed point representation is
defined by two parameters:

• d - length (number of bits) of integer part.
• f - length (number of bits) of fractional part.

The length l of the fixed point number is l = d+f . Therefore
any bit stored in the buffering memory can be flipped with the
same probability Pe. Conversely, for a fixed point number of
length l, each bit position from 0 to l− 1 can be flipped with
probability Pe.

Hence, the probability to have k bits flipped is given by

pk =

(
l
k

)
P ke (1− Pe)l−k (2)

The value of the error at a particular bit position j depends
on the fixed point format [d].[f ] and the error free bit value
yji of i-th element of the receive symbol vector y

eji =

{
+2(j−f) when yji = 0

−2(j−f) when yji = 1
(3)

The pdf of the i-th element of the receive vector after the
memory is in general given as

f(ȳi) =
l∑

k=0

pkf(yi, k) (4)

The pdf f(yi, 0) defines the distribution of ȳi when there is
no bit flip, and in this case ȳi = yi. The pdf f(yi, 1) defines
the distribution of ȳi when there is a single bit flip. This pdf
is given as

f(yi, 1) =
l−1∑
j=0

f j(yi, 1) (5)

where f j(yi, 1) is the pdf of ȳi given the error at bit position
j, where the error value is given in Eq. 3. In general, in case
of k bit flips

f(yi, k) =
1

k!

l−1∑
j1=0

l−1∑
j2=0,
j2 6=j1

. . .
l−1∑
jk=0,
jk 6=j1,

... ,jk 6=jk−1

f j1,j2,... ,jk(yi, k) (6)

As Pe is typically a low value, the probability to have
multiple bit flips within same yi is negligible. Hence, pdf of
i-th element of receive vector after the memory ȳi = yi + eji ,
j = 0, . . . , l − 1 is

f(ȳi) = p0f(yi, 0) + p1f(yi, 1) (7)

= p0f(yi, 0) + p1

l−1∑
j=0

f j(yi, 1)
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Fig. 2: pdf of receive vector element

where p0 = (1− Pe)l and p1 = Pe(1− Pe)l−1.

III. RESILIENT NONLINEAR DETECTION

As indicated in Sec. II, linear detection is attractive for
massive MIMO uplink, since its complexity grows linearly
with the number of antennas. Among linear schemes, linear
MMSE (LMMSE) estimation achieves the best performance
[13]. The LMMSE estimate is given as

x̂ = σ2
xIH

T
(
HTσ2

xIH + σ2
nI
)−1

y (8)

where σ2
nI is the AWGN covariance matrix and σ2

xI is the
transmit symbol vector covariance matrix.

The LMMSE estimate in Eq. 8 is optimal in minimum mean
square sense when the transmit symbol vector x and the noise
vector n are independent and Gaussian distributed [14]. Due
to memory errors, this assumption does not hold anymore.
Figure 2 depicts the distribution of an element of ȳ for [4].[8]
fixed point format. Clearly, this distribution is not Gaussian.
The difference to Gaussian bell curve is most prominent at
the tails of the depicted distribution. Therefore, in presence of
memory errors, the LMMSE estimate is expected to produce
a poor result.

It is known, that any distribution can be well approximated
by a mixture of Gaussian distributions [15]. Hence, the frame-
work of Gaussian mixture (GM) model can be used as a
starting point for derivation of a suitable detection scheme
that takes memory errors into account. The pdf of a Gaussian
mixture distributed random vector r is given as [16]

f(r) =

M∑
m=1

pmN(µmr , C
m
rr) (9)

where µmr is the mean of m-th component, Cmrr is the covari-
ance matrix of m-th component and pm is the probability of
drawing the m-th component from available M components.

Obviously,
M∑
m=1

pm = 1.

At first glance, it makes sense to regard the joint effect of
AWGN and memory errors as a GM distributed noise vector
n̄, with component covariance matrices σ2

nmI. The MMSE
estimate for a Gaussian mixture is given as [17]

x̂ =
M∑
m=1

αm(y)σ2
xIH

T (Hσ2
xIH

T + σ2
nmI)−1y (10)
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with coefficients αm(y)

αm(y) =

pm
1

(
√
2π)2Mr |Hσ2

xIH
T+σ2

nmI|
1
2
e−wm∑M

m=1 pm
1

(
√
2π)2Mr |Hσ2

xIH
T+σ2

nmI|
1
2
e−wm

(11)

where the exponents wm are given as

wm =
1

2
yT (Hσ2

xIH
T + σ2

nmI)−1y (12)

It is a nonlinear MMSE estimate (NMMSE), since the coef-
ficients αm(y) are non-linear in y. These coefficients can be
regarded as the probability that the noise is drawn from com-
ponent pdf m, given the receive vector y. It is to observe that
if there is only one noise component, M = 1, the coefficient
α1(y) equals one and the NMMSE estimate coincides with
the LMMSE estimate in Eq. 8.

The general NMMSE estimator is next adapted to mitigate
the effect of the memory errors. First, the attention is restricted
to single bit flips within the integer part, as they cause
the largest error values. In this case the mixture component
probabilities pm are: the probability to have no memory errors
p(k=0) and d equal probabilities p(k=1) to have a single bit
flip at one of the integer bit positions j, j ∈ {l − 1, . . . , f}.
Therefore, there would be d + 1 noise components: nominal
channel AWGN noise n in case there are no memory errors
and d components where each noise term includes the bit flip
at bit position j, j ∈ {l − 1, . . . , f}.

The problem with this approach is that according to memory
error model in Sec. II, the value of eji actually depends on
value of yji . Thus, it is not possible to separate out eji from ȳi
and form n̄i = ni + eji . Therefore, the same channel AWGN
noise vector with covariance matrix σ2

nI is present in all d+1
mixture components. The first component assumes the vector y
to be memory error free, while remaining components assume
that some elements of receive vector y are affected by bit flips
at position j,

ȳj = y + eju (13)

where ej are the error values given in Eq. 3. Vector u contains
ones at i-th position for which the bit flip at bit position
j occurs and zero otherwise. The simplifying assumption of
having single-bit flip in just a single element i of the receive
vector taken in [11] cannot be fulfilled in massive MIMO
uplink due to large memory size required. Therefore, the
receive vector ȳ may contain multiple elements i affected by
a single bit flip at position j, j ∈ {l−1, . . . , f}. This implies
that vector u may contain multiple ones.

Finally the mixture contains: receive vector y with no
memory errors with component probability p(k=0) and d
components where receive vector yj has a bit flip at position
j, j ∈ {l−1, . . . , f} at some elements i with same component
probability p(k=1). Since possible error values are known, the
positions i of error-affected vector elements can be identified
one by one. When an element of the receive vector contains

a flip in the integer part, the pdf of ȳ will deviate from
the nominal multivariate Gaussian distribution given in the
numerator of the NMMSE coefficient α(m=1)(ȳ) in Eq. 11.
The exponent w(m=1) given in Eq. 12 will assume a large
value and the coefficient α1(ȳ) will be close to zero.

The receiver has the potentially error-affected vector at its
disposal, but does not know whether the error has occurred, nor
the affected element(s) of the vector. Therefore, for each pos-
sible bit flip position j (corresponding to mixture components,
m > 1), the single-bit flip correction values βji are computed
for all i elements of the receive vector. Since the value of the
assumed bit flip depends on the value of the receive vector,
the correction values are obtained as

βji =

{
(2ȳji − 1)2(j−f) when j = l − 1

(−2ȳji + 1)2(j−f) when j 6= l − 1
(14)

The exponents wji are obtained with applied single-bit
corrections

wji =
1

2
(ȳ + βjiui)

T (Hσ2
xIH

T + σ2
nI)
−1(ȳ + βjiui) (15)

where ui is the unit vector containing one at position i and
zeros at other positions. When the applied single-bit correction
indeed corrects the error, the deviation from the nominal
Gaussian density would decrease and the respective wji will
decrease too. Otherwise, the correction actually introduces an
error, forcing respective wji to increase. By finding the minimal
exponent wji for a given j, j ∈ {l−1, . . . , f}, the index i of the
receive vector element where the bit flip at position j occurred
is identified.

Next, the coefficients αm(ȳ) are obtained with minimal
exponent values. It is to note that as the division by the sum
of numerators in Eq. 11 is just scaling, the numerator of coef-
ficient and the coefficient itself will be used interchangeably.
The direct computation of coefficients by Eq. 11 reveals a
numeric instability that is caused by the multiple errors within
the receive vector.

Assume that ȳ contains two bit flips: one at (l − 1)-th bit
position in element s and the other at (l − 2)-th bit position
in element z. The minimum exponent value for (l − 1)-th
bit flip position will be obtained with the bit flip corrected,
however, due to the remaining bit flip in element z, the value
of w(l−1)

min may still be large. This would result in the zero
coefficient for (l − 1)-th bit flip position. The same would
happen for w(l−2)

min , due to influence of bit flip in element s.
This way all coefficients would be computed to zero, rendering
the algorithm useless. This problem is avoided by transforming
Eq. 11 to log domain.

αm(ȳ) = log(pm)− (16)

− log
(

(
√

2π)2Mr |Hσ2
xIH

T + σ2
nI|

1
2

)
− wjmin

The maximum coefficient identifies the single error that
caused the maximal deviation from the nominal Gaussian pdf.
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The value of this error is given by the maximal coefficient
index m that corresponds to the bit flip position j. The vector
element i where this error has occurred is given by the index
for which the minimal exponent was obtained for the maximal
coefficient.

This way the correction is performed iteratively starting
from the memory error which caused the largest deviation and
correcting one error per iteration. The algorithm is summarized
in Alg. 1. Its detailed function is outlined next.
• The algorithm starts on the potentially memory error

affected receive vector.
• Next, the main loop is executed until maximum number

of iterations mit is reached.
• Within an iteration, the bit values ȳji of all integer bit

positions of all receive vector elements are extracted by
BITGET function in line 6 of Alg. 1.

• For these bit values the correction values are computed
by Eq. 14, assuming that a single flip occurred at exactly
this position.

• Next, exponents wji by Eq. 15 are computed with correc-
tion values obtained previously.

• For each integer bit position j, minimum exponent is
obtained. Its index s identifies the receive vector element
with assumed error at bit position j. Recall that the j-th
bit flip position corresponds to the mixture component
m > 1. For m = 1, minimization is not required, since
ȳ is assumed memory error free and w(m=1) is obtained
by Eq. 12.

• Component coefficients αm(ȳ) with obtained minimum
exponents wjmin and w(m=1) in log domain are computed
by Eq. 16.

• The maximum component coefficient is obtained. Its
index identifies the bit position of the error. If αmax(ȳ)
corresponds to m = 1, the algorithm is terminated as all
errors are assumed to have been corrected and LMMSE
estimate of the current ȳ(it) is output:

x̂ = σ2
xIH

T (Hσ2
xIH

T + σ2
nI)
−1ȳ(it) (17)

Otherwise, the correction value βzs corresponding to
αmax(ȳ), where z indicates the bit flip position within the
s-th vector element where the memory error has occurred,
is applied to ȳ

ȳ(it+1) = ȳ(it) + βzs (18)

• The subsequent iteration is started with ȳ(it+1)

• In the last iteration, the LMMSE estimate with the last
found correction value is output as the final solution

x̂ = σ2
xIH

T (Hσ2
xIH

T + σ2
nI)
−1(ȳ(mit) + βzsus) (19)

IV. RESULTS

The simulation is performed for bit flip probabilities
of Pe = 10−4 and Pe = 10−3. The fixed point for-
mat is [6].[8]. Therefore, the possible error values are

Algorithm 1 Iterative log-NMMSE
1: Input: ȳ, H, Pe, mit. Output: x̂.
2: ȳ(it=1) = ȳ . Initialization
3: for it = 1, . . . ,mit do . maximum number of iterations
4: for j = f, . . . , l − 1 do . integer bit positions
5: for i = 1, . . . , 2Mr do . receive vector elements
6: ȳji =BITGET(ȳ, j) . obtain bit value
7: end for
8: end for
9: for j = f, . . . , l − 1 do

10: for i = 1, . . . , 2Mr do
11: βji ← (Eq. 14) . compute correction value
12: end for
13: end for
14: for j = f, . . . , l − 1 do
15: for i = 1, . . . , 2Mr do
16: wji ← (Eq. 15) . try out correction values
17: end for
18: end for
19: for all j do
20: wjmin ← argmin

i
wji . obtain erroneous vector

element
21: end for
22: for m = 1, . . . , d+ 1 do
23: αm(ȳ) ← (Eq. 16)
24: end for
25: αmax(ȳ)← argmax

m
αm(ȳ) . identify bit position of

the error
26: if it 6= mit then
27: if m = 1 then
28: x̂ ← (Eq. 17) . no correction is necessary
29: else
30: αmax(ȳ)→ βzs . pick correction value
31: ȳ(it+1) ← (Eq. 18) . correct found error

before next iteration
32: end if
33: else
34: αmax(ȳ)→ βzs . pick correction value
35: x̂ ← (Eq. 19) . output LMMSE estimate with

final correction
36: end if
37: end for

{±25,±24,±23,±22,±21,±20} with probability p(k=1) =
Pe(1 − Pe)5. The channel matrix H is assumed constant for
the duration of 100 receive symbol vectors. The uplink massive
MIMO system employs Mr = 256 receive antennas. Modu-
lation is 4-QAM with Gray mapping. The information bits
are encoded by (133, 171) convolutional code with constraint
length 7 and code rate 1/2. At the receiver side, the detected
bits are decoded by soft decision Viterbi decoder. The BER
performance is depicted in Fig. 3, 4 for Pe = 10−3 and
Pe = 10−4. The LMMSE curve for the case of no memory
errors (Pe = 0) is plotted for reference and highlighted
in blue. Both plots indicate the drastic BER degradation
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Fig. 3: BER performance, Pe = 10−3

Fig. 4: BER performance, Pe = 10−4

with LMMSE in case of memory errors (red curves). With
Pe = 10−3, proposed NMMSE-based method is able to lower
the error floor by three orders of magnitude, performing six
iterations mit = 6. With Pe = 10−4, performance close to
the memory error-free case is achieved already with mit = 3.
The introduced computational overhead scales linearly in the
number of receive antennas Mr, since the additional operations
are solely matrix-vector multiplications. The run-time of the
proposed algorithm is 2.5 times that of the standard linear
detection, with comparison performed on the same host.

V. CONCLUSION

This paper proposed a memory error resilient detection
algorithm for massive MIMO uplink. The simulation results
demonstrate that the proposed solution significantly reduces
the impact of the multiple memory errors on the BER. In
future work it would be relevant to investigate how to tune
the maximum number of iterations, such that the optimum
improvement is achieved with less computational effort, de-
pending on the value of bit flip probability Pe and Eb/N0.
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