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Abstract—We propose novel algorithms for distributed pro-
cessing in applications constrained by available communication
resources, using diffusion strategies that achieve up to three
orders-of-magnitude reduction in communication load on the
network, while delivering equal performance with respect to
the state of the art. After computation of local estimates, the
information is diffused among processing elements (or nodes)
non-uniformly in time by conditioning the information transfer
on level-crossings of the diffused parameter, resulting in a
greatly reduced communication requirement. We provide the
mean stability analysis of our algorithms, and illustrate the
gain in communication efficiency compared to other reduced-
communication distributed estimation schemes.

I. INTRODUCTION

Distributed networks and signal processing algorithms have

been a subject of growing interest in recent years, in view of

their desirable characteristics such as intrinsic robustness and

scalability [1], allowing for enhanced efficiency and perfor-

mance in a large class of applications including wireless sensor

networks, environmental surveillance, target localization, and

distributed resource allocation [2], [3]. However, successful

implementation of such applications depends on a substan-

tial amount of communication resources. As an example, in

smart grid applications, measurement units operating with high

frequency put the communication infrastructure of the grid

under significant pressure [4]. This calls for resource-efficient,

event-triggered distributed estimation solutions that incorpo-

rate event-driven communication. To this end, in this paper,

we construct distributed architectures that have a significantly

reduced communication load without compromising perfor-

mance. We achieve this by introducing novel event triggered

communication architectures over distributed networks.

In a distributed processing framework, a group of

measurement-capable agents, termed nodes, in a network

cooperate with one another in order to estimate an unknown

common phenomenon [5]. Among the different approaches,

we specifically consider diffusion-based protocols that exploit

the spatial diversity of the network by restricting information

sharing to neighboring nodes, without considering any central

processing unit or a fusion center [1], [5]. Diffusion protocols

provide an inherently scalable data processing framework that

is resilient to changes in network topology such as link failures

as well as changes in the statistical properties of the unknown

phenomenon that is measured [5]. However, the requirement

for all nodes to exchange their current estimates with their

neighbors at each iteration places a heavy burden on the

available communication resources [6].

Here, we propose novel event-triggered distributed estima-

tion algorithms for communication-constrained applications

that achieve up to three orders-of-magnitude reduction in the

communication load over the network. We achieve this by

leveraging the uneven distribution of the events over time to

efficiently reduce the communication load in real life appli-

cations. In particular, we condition an information exchange

between the neighboring nodes on the level-crossings of the

diffused parameter [7], unlike using a fixed rate of diffusion,

cf. [1], [5]. Furthermore, we show that it is sufficient to only

diffuse the information indicating the direction of the change

in the levels, which can be handled using only a single bit for

a slowly-varying parameter.
Reduced communication diffusion is extensively studied in

the signal processing literature [6], [8]–[11]. In [6], [8], [9], the

authors restrict the number of active links between neighbors

using a probabilistic framework, or by adaptively choosing

a single link of communication for each node. In [10], local

estimates are randomly projected, and the information transfer

between the nodes is reduced to a single bit. In [11], only

certain dimensions of the parameter vector are transmitted. On

the other hand, in this paper, we reduce the communication

load down to only a single bit or a couple of bits, unlike

[6], [8], [9], [11], in which authors diffuse parameters in

full precision. Furthermore, we regulate the frequency of

information exchange depending on the rate of change of the

parameter, unlike [10] where the authors transfer information

at each single time instant.
Our main contributions are as follows. We introduce algo-

rithms for distributed estimation that i) significantly reduce the

communication load on the network, ii) while continuing to

provide equal performance with the state of the art. We also

perform the mean-stability analysis of our algorithms. Through

numerical examples, we show that our algorithms achieve up

to three orders-of-magnitude reduction in the communication

load over the network.
The paper is organized as follows: In Section II, we in-

troduce the distributed estimation framework and discuss the

adapt-then-combine (ATC) diffusion strategy. We further detail

our algorithms in Section III, where we formulate the level-

triggered distributed estimation algorithm. In Section IV, we

present the algorithmic description of the proposed scheme.

In Section V, we provide the mean stability analysis of the

proposed distributed adaptive filter and state the conditions for

stability. We provide experimental verification of the algorithm

in Section VI, and oncluding remarks in Section VII.
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and uses the estimated parameter value from the previous time

instant:

ξ
q
i,t = ξ

q
i,t−1. (4)

We note that the set of levels S is known by all nodes in

the network. Hence, as the diffused information, it is sufficient

for the node i to only convey how ξ
q
i,t changes compared

to the previously-crossed level ξ
q
i,t−1. In particular, we note

the following two cases: In the first case, the parameter ξi,t
changes slowly enough such that a crossing through multiple

levels do not occur, so that the node i only needs to indicate the

direction of the change in levels, which we represent using a

single bit. In the second case, we may have multiple crossings

where we directly code with a flag bit the full location

information of the new level value ξ
q
i,t using ⌈log2(K)⌉ + 1

bits. As shown, this approach significantly lowers the amount

of communication while maintaining estimation performance.

IV. ALGORITHM DESCRIPTION

In this section, we present the full algorithmic description

of the proposed diffusion scheme with the level-crossing

quantization [7]. At time t, a given node i in the network

makes the scalar observation di,t through the linear model

di,t = uT
i,two + vi,t, which is then used to update its

intermediary local estimate using the LMS adaptation

ϕi,t+1 = (IM − µiui,tu
T
i,t)wi,t + µiui,tdi,t.

Due to the quantized communication framework, a neighbor-

ing node j does not have access to the true value of the

parameter ϕi,t+1, which has M entries. As such, based on

the limited information it receives from the node i, the node j

tries to estimate this parameter as the M -entry vector ϕ
q
i,t+1.

Specifically, in the LC quantization, the node j receives

information about how the current values of the entries of

the parameter ϕi,t+1 have changed relative to the most recent

estimate the node j has access to, namely ϕ
q
i,t. In order

to provide this information, the node i also keeps a record

of the past estimated parameter values {ϕq
i (k)}

t
k=1 that the

neighboring nodes have related to its true {ϕi(k)}
t
k=1. The

node i uses the most recent entry in this record, ϕ
q
i,t, as a

reference and diffuses information to the neighboring nodes j

indicating how the current estimate ϕi,t+1 compares to this

reference on a per-entry basis. In particular, the node i makes

this comparison by checking for a level crossing between

corresponding entries of the two vector quantities ϕ
q
i,t and

ϕi,t+1. If there is a level crossing on an entry, the node

i transmits information to its neighbors through a channel

frequency allocated to this particular entry. If there is a single

level-crossing, this information indicates the direction of the

level crossing; otherwise, the transmitted information directly

specifies the location of the new level. A neighboring node

j then constructs the estimate ϕ
q
i,t+1 using (3) or (4) on a

per-entry basis, depending on whether the node i diffuses

information or not, respectively, at time t.

While diffusing information related to its own local esti-

mate, the node i also receives information from the neighbor-

ing nodes j representing their local estimates ϕj,t+1. For each

neighboring node j, the node i uses this diffused information

to reconstruct ϕ
q
j,t+1 using (3) or (4). The final estimate wi,t+1

is then constructed using the combination

wi,t+1 = pi,iϕi,t+1 +
∑

j∈Ni\{i}

pi,jϕ
q
j,t+1.

Remark: In order to keep the presentation clear, we illus-

trate the special case of M = 1 of the proposed algorithm

in Algorithm 1, which can be generalized to arbitrary M in a

straightforward manner.

Remark: We note that an alternative approach to dealing

with the M > 1 case is to have the nodes in the network

transmit only a certain entry of their intermediary estimates

ϕi,t. As an example, in this case, the nodes can cycle through

different entries across time in a round-robin fashion. The

non-communicated entries are replaced by the corresponding

entries in the local intermediary estimate [11]. This approach

is explored in the Experiments section.

V. MEAN STABILITY ANALYSIS

To continue with the stability analysis of the proposed

scheme, we assume that the regressors ui,t are temporally and

spatially independent, zero mean and white, with covariance

matrix Λi , E
[

ui,tu
T
i,t

]

= σ2
u,iIM . The observation di,t at

node i is assumed to follow a linear model of the form

di,t = uT
i,two + vi,t, (5)

where {vi,t}t≥1 is a white Gaussian noise process with vari-

ance σ2
v,i, independent of {uj,t}t≥1 ∀i, j.

In our proposed level-triggered estimation framework, at

each node i, the diffusion LMS update for the ATC strategy

take the form

ϕi,t+1 = (IM − µiui,tu
T
i,t)wi,t + µiui,tdi,t, (6)

wi,t+1 = pi,iϕi,t+1 +
∑

j∈Ni\{i}

pi,jϕ
q
j,t+1, (7)

where the combination matrix P is taken to be stochastic, with

its rows summing up to unity. We rewrite the expressions (6)

and (7) as

ϕi,t+1 = (IM − µiui,tu
T
i,t)wi,t + µiui,tdi,t, (8)

wi,t+1 =
∑

j∈Ni

pi,jϕj,t+1 −
∑

j∈Ni\{i}

pi,jαj,t+1, (9)

by defining the quantization error for node j

αj,t , ϕj,t −ϕ
q
j,t.

We represent the diffusion update over the network N in

state-space form by introducing the following global quanti-

ties:

dt , col {d1,t, . . . , dN,t} vt , col {v1,t, . . . , vN,t}

wo , col {wo, . . . ,wo} Ut , bdiag {u1,t, . . . ,uN,t}

M , bdiag {µ1IM , . . . , µNIM} wt , col {w1,t, . . . ,wN,t}

ϕt , col {ϕ1,t, . . . ,ϕN,t} ϕ
q
t , col

{

ϕ
q
1,t, . . . ,ϕ

q
N,t

}

αt , col {α1,t, . . . ,αN,t} G , P ⊗ IM

GC , (P − diag {P })⊗ IM
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Algorithm 1 ATC Diffusion LMS with the LC Quantization,

M=1
1: for i = 1 to N do

Initialization:

2: wi,0 = ϕ
q
i,0 = 0

3: end for

4: for t ≥ 0 do

5: for i = 1 to N do

Local adaptation:

6: ϕi,t+1 = (1− µiu
2
i,t)wi,t + µiui,tdi,t

Check for level crossing:

7: if ∃ li,t ∈ S such that

(ϕq
i,t − li,t) (ϕi,t+1 − li,t) < 0 then

8: if The crossing is to an adjacent level then

9: Diffuse the direction of the crossing

10: else

11: Diffuse the location of the new level

12: end if

13: Locally store ϕ
q
i,t+1 = li,t in record

14: else

15: Remain silent

16: Locally set ϕ
q
i,t+1 = ϕ

q
i,t

17: end if

Reconstruction:

18: for all j ∈ Ni \ {i} do

19: if node j is silent then

20: Reconstruct as ϕ
q
j,t+1 = ϕ

q
j,t

21: else

22: Reconstruct ϕ
q
j,t+1 using the diffused

information

23: end if

24: end for

Combination:

25: wi,t+1 = pi,iϕi,t+1 +
∑

j∈Ni\{i}
pi,jϕ

q
j,t+1

26: end for

27: end for

Using the above-defined quantities, the diffusion updates (8),

(9) take the following global state-space form:

ϕt+1 = (IMN −MUtU
T
t )wt +MUtdt, (10)

wt+1 = Gϕt+1 −GCαt+1. (11)

Similarly, the data model (5) can be expressed in terms of the

global quantities as

dt = UT
t wo + vt. (12)

To facilitate the mean stability analysis, we define the global

deviation parameters

w̃t , wo −wt,

ϕ̃t , wo −ϕt.

After substituting (12) and subtracting both sides of (10),

(11) from wo, the diffusion updates in terms of the deviation

parameters take the following form:

ϕ̃t+1 = (IMN −MUtU
T
t )w̃t −MUtvt, (13)

w̃t+1 = Gϕ̃t+1 +GCαt+1, (14)

where we have used the relation Gwo = wo, which results

from the stochastic nature of P .

The expressions (13), (14) can be expressed compactly as

w̃t+1 = G(IMN −MUtU
T
t )w̃t

−GMUtvt +GCαt+1. (15)

Assumption: The quantization error over the network αt has

zero mean. This is a reasonable assumption for the analysis of

quantization effects [12]. The applicability of the assumption

is verified by our experiments in Section VI.

Taking expectations of both sides of (15) yields

E [w̃t+1] = G(IMN −MΛ)E [w̃t] , (16)

where Λ , bdiag {Λ1, . . . ,ΛN} is block diagonal.

For mean stability and asymptotic unbiasedness of the

distributed filter (6)-(7), we require that the spectral radius

|G(IMN − MΛ)| < 1, which, noting that G is stochastic

with nonnegative entries, is equivalent to requiring

|(IMN −MΛ)| < 1, (17)

by Lemma 1 of [1]. Noting that the eigenvalues of the block

diagonal matrix IMN −MΛ is the union of the eigenvalues

of its individual blocks IM − µiΛi where Λi = σ2
u,iIM ;

we conclude that the distributed filter is mean stable if

|1− µiσ
2
u,i| < 1, i = 1, . . . , N , i.e., if

0 < µi <
2

σ2
u,i

i = 1, . . . , N,

which provides the stability condition of the proposed algo-

rithm.

VI. EXPERIMENTS

In this section, we demonstrate the significant reduction

in the communication load achieved by our algorithms while

providing equal performance with respect to the state of the art.

For the simulations, we consider a sample network consisting

of N = 10 nodes, where each node makes a scalar observation

via the linear model (1). The regressor standard deviations

σu,i are chosen randomly from the interval (0.1, 0.3). The

observation noise is generated from a Normal distribution with

variance σ2
v = 0.01. The unknown vector parameter wo with

M = 10 components is randomly chosen from a Normal

distribution, and normalized to unit energy. This randomization

is repeated one more time within the course of the simulation

to observe how well the algorithm is able to track sudden

changes in the unknown parameter. We use the Metropolis

rule to generate the network matrix P using

Pi,j =







2
M2

1
max(Ni,Nj)

if i 6= j are linked,

0 for i and j not linked,

1−
∑

j∈Ni\i
λi,j for i = j
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Fig. 3. MSD Performance of the proposed algorithm, represented with the
label ’LC’.

We configure the nodes such that they cycle through the entries

of the intermediary estimates in a round-robin fashion, and

exchange only one out of M components [11].

We compare the proposed algorithm with [11] and demon-

strate that our algorithm significantly enhances the efficiency

of the adaptive network in terms of the incurred communi-

cation cost. In Figure 4, the mean-square deviation (MSD)

performance, given by E‖w̃t‖
2 of the proposed algorithm is

demonstrated, where as a reference, we have considered [11]

with an adaptive Lloyd-Max quantizer, and the no-quantization

(scalar) implementation of the system. The simulations use

a value of µ = 0.05. Figure 5 demonstrates the substantial

enhancement in the communication efficiency achieved by

the proposed algorithm, in terms of the total number of

bits exchanged between the nodes across the entire adaptive

network. In particular, we see that the proposed algorithm

provides three orders of magnitude improvement over the

reference implementation in terms of the communication load

on the network, while almost exactly matching it in terms of

the steady-state global mean-square deviation, the speed of

convergence and the tracking performance. We stress further

that we achieve this improvement with relatively little com-

plexity since we have shown that using a simple non-adaptive

quantizer is sufficient to realize the improvements.

VII. CONCLUSION

We introduced an event-triggered distributed estimation al-

gorithm with level-crossing quantization for distributed appli-

cations, where an unknown parameter is cooperatively learned

by a group of nodes in an adaptive network. We proposed

a diffusion-LMS algorithm where at each time instant, a

node initiates communication with its neighbours only if the

parameter to be communicated goes through a level crossing,

which is signified by a single bit that indicates the direction

of the level crossing. Consequently, the proposed algorithm

required data transfers between the nodes that are much

more sparse across time, as compared to a continuous stream

of information at each instant. This translated into a much

diminished load on available communication resources, which
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Fig. 4. Time evolution of the total number of bits transmitted on the network.

is of crucial importance in applications such as big data, where

these resources are constrained, set against the sheer volume of

the data. By theoretical analysis and simulations, we showed

that the proposed algorithm is convergent in the mean sense,

and we demonstrated that it achieves up to three orders-of-

magnitude improvement in the communication load imposed

on the network.
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