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Abstract—We consider the ill-posed inverse problem encoun-
tered in perfusion magnetic resonance imaging (MRI) analysis
due to the necessity of eliminating, via a deconvolution process,
the imprint of the arterial input function on the MR signals. Until
recently, this deconvolution process was realized independently
voxel by voxel with a sole temporal regularization despite the
knowledge that the ischemic lesion in acute stroke can reasonably
be considered piecewise continuous. A new promising algorithm
incorporating a spatial regularization to avoid spurious spatial
artifacts and preserve the shape of the lesion was introduced
[1]. So far, the optimization of the spatio-temporal regularization
parameters of the deconvolution algorithm was supervised. In this
communication, we evaluate the potential of the L-hypersurface
method in selecting the spatio-temporal regularization param-
eters in an unsupervised way and discuss the possibility of
automating this method. This is demonstrated quantitatively with
an in silico approach using digital phantoms simulated with
realistic lesion shapes.

I. INTRODUCTION

Stroke – a neurological deficit resulting from blood supply
perturbations in the brain – is a major public health issue,
representing the third cause of death in industrialized coun-
tries. There is an important need to be able to identify patients
eligible to the different therapies and evaluate the benefit-risk
ratio for the patients. In this context, Dynamic Susceptibility
Contrast (DSC) perfusion MRI is one of the imaging modality
used in clinical routine as a diagnostic tool since it allows to
compute parameters reflecting the state of perfusion of the
cerebral tissues. A DSC-perfusion MRI is a time series of
MRI images, the acquisitions of which are synchronized with
the intravascular bolus injection of a contrast-agent. The MR
signal recorded in each voxel can be used to calculate the
concentration-time curve of the contrast-agent in the tissues
within each voxel. The shape of each concentration-time curve
will not only depend on the state of perfusion of the tissues
within the voxel – information of clinical interest – but also on
the shape of the contrast-agent bolus at its arrival in the brain,
commonly referred to as the arterial input function. However
– due, among other things, to the inter-individual variability
in cardiac functions – each patient has an unique arterial input
function. Consequently, a step of deconvolution is necessary in
order to eliminate the contribution of the arterial input function
and extract the clinically relevant information.

The contrast-agent concentration can be modeled as the con-
volution of the arterial input function with an impulse response

function which contains the information on the state of perfu-
sion. The deconvolution step corresponds to the computation
of this impulse response function from the contrast-agent con-
centration and the arterial input function, which can both be
calculated from the perfusion image. This deconvolution step
corresponds to the resolution of an ill-posed inverse problem
which requires the use of a priori information, for example the
introduction of regularity constraints on the solution. To the
best of our knowledge, the deconvolution algorithms currently
used in clinical routine only consider the deconvolution of
each contrast-agent concentration-time curves independently,
ignoring the correlation between neighboring voxels inherent
to the structured organization of the brain tissues. Frindel et
al. [1] recently proposed a new edge-preserving deconvolution
algorithm with a spatio-temporal regularization that exploits
the correlation between neighboring voxels. This algorithm
was illustrated on synthetic data as well as on real data
from a retrospective study and its efficiency and interest was
demonstrated for acute stroke after a supervised optimization
of the spatio-temporal regularization parameters. However,
since the supervised optimization of the parameters is not
possible for real data in clinical routine, it is important to be
able to optimize these parameters in an unsupervised fashion.

Numerous methods for the unsupervised optimization of
regularization parameters have been proposed in the literature,
although most are concerned with the optimization of a
single regularization parameter [2] and are not always easily
extendable to multiple parameters optimization. Amongst them
however, the L-curve method [3] was extended to the multi-
dimensional case [4] [5]. Although the L-curve method is a
fairly popular method in practice for its intuitive principle,
simplicity of implementation and because it does not require
any a priori knowledge about the noise, its applicability in a
specific context needs to be verified on a one to one basis.

In this communication we discuss the possibility of auto-
matically optimizing in an unsupervised manner the spatio-
temporal regularization parameters of the deconvolution al-
gorithm proposed by Frindel et al. [1] by using a method
generalizing the L-curve method, namely the L-hypersurface
method. The communication is organized as follows. We first
present the synthetic data which were specifically designed
to test the performance of the L-hypersurface method for
the optimization of spatio-temporal regularization parameters
in application to stroke. We then present the deconvolution
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algorithm proposed in Frindel et al. [1] as well as an upgraded
version of this algorithm containing a new non-negativity
constraint. The L-hypersurface method is then explained and
its performance is evaluated in our specific framework. Finally,
a method for the automation of the L-hypersurface method is
proposed and its performance discussed.

II. SYNTHETIC DATA

In order to evaluate the performance of the L-hypersurface
method for the unsupervised optimization of regularization
parameters, we need to be able to define a target set of
regularization parameters. We therefore chose to work with
synthetic data, where the true impulse response function for
each voxel is known and where we will be able to calculate
objectively the optimal set of regularization parameters. In the
treatment of stroke patient images, lesion shape was recently
shown to be a biomarker of interest for the prediction of the
final volume infarct [6]. We will therefore design images that
have realistic lesion shapes, as well as realistic pathological
and healthy perfusion values.

The contrast-agent concentration-time images and their cor-
responding impulse response images are simulated from four
2D label images – extracted from the I-KNOW database [6]
– which determine the tissue type of each voxel: healthy
tissue, ischemic tissue or background voxels (cf. Fig. 1). The
lesion shapes of each label images were chosen specifically
to be representative of the variability observed in the I-
KNOW database. The contrast-agent concentration associated
to each voxel v, Cv(t) (mM), is modeled as the convolution
of a global arterial input function, Ca(t) (mM), and an
impulse response function specific to each voxel v, fv(t):

Cv(t) ∼
t∫

0

Ca(τ)fv(t − τ)dτ , where Ca(t) is a gamma

function and fv(t) = CBFv for t ≤ MTTv and fv(t) = 0
for t > MTTv , with CBFv the cerebral blood flow and MTTv

the mean transit time. The impulse response function fv(t)
corresponds to the ground truth after deconvolution of each
voxel v and contains the information on the state of perfusion
of clinical interest, namely CBFv and MTTv . The CBF and
MTT are set respectively to 40 mL/100g/min and 4.5 s for
healthy tissues and to 10 mL/100g/min and 9 s for ischemic
tissues. Background voxels are simply set to 0 for all time
points. A Gaussian noise, meant to model the fluctuations in
the MRI acquisition system, is finally added to the images in
order to obtain a peak signal to noise ratio over the brain voxels
of 22.6 dB, typical of the noise level observed in clinical data
[1].

The interest of using simulated data is that the quality of the
impulse response image obtained after deconvolution can be
evaluated quantitatively since the true impulse response image
is known. Since the CBF is amongst the perfusion parameters
of great clinical interest [7] [8] and can easily be extracted
after deconvolution as CBFv = max (fv(t)) for all voxel v,
we propose here to use as a quantitative quality criteria the
MAPE defined as the mean absolute percentage error value in

L1 L2 L3 L4

Fig. 1. 2D-label images used for the simulation: in gray, the healthy tissues;
in white, the ischemic tissues; in black, the background voxels.

the brain tissues (ignoring the background voxels) on the CBF
map:

MAPE (%) = 100 ∗ 1

Nv

∑
v∈brain

∣∣∣∣∣ ĈBFv − CBFv

CBFv

∣∣∣∣∣ , (1)

with Nv the number of voxels in the brain, ĈBFv the cerebral
blood flow estimated after deconvolution in voxel v and CBFv

the true cerebral blood flow in voxel v. The deconvolution
algorithms used in this paper are described in the following
section.

III. DECONVOLUTION ALGORITHM

Frindel et al. [1] proposed to address the deconvolution
problem with the minimization, over the impulse response im-
age f , of a global cost function Ω composed of a data-fidelity
term Φ(f) and of two a priori terms corresponding to spatial
(Ψs(f)) and temporal (Ψt(f)) regularization constraints:

Ω(f) = Φ(f) + λsΨs(f) + λtΨt(f) , (2)

where λs and λt are the regularization parameters controlling
respectively the strength of the spatial and temporal regular-
izations. We also propose an upgraded version of this algo-
rithm containing an additional a priori term, a non-negativity
constraint, based on the knowledge that an impulse response
function is necessarily positive:

Ω(f) = Φ(f) + λsΨs(f) + λtΨt(f) + λp‖(−f)+‖22 , (3)

with (−f)+ = max(−f, 0). The regularization parameter λp
controlling the strength of the non-negativity constraint is fixed
to a high value since the non-negativity constraint is a very
strong a priori knowledge. The explicit expressions of Φ(f),
Ψs(f) and Ψt(f) are detailed in [1].

The solution obtained after deconvolution – that is the
impulse response image f∗Λ minimizing Ω for a given set of
regularization parameters Λ = (λs, λt) – will vary consid-
erably depending on the choice of Λ. The good behaviour
of the deconvolution algorithms – that is their ability to
give a robust solution, close to the true impulse response
image – will depend on the appropriate tuning of this set of
regularization parameters. Generally, nothing is known of the
true impulse response image and we therefore need a method
to optimize these regularization parameters in an unsupervised
manner. In the following, we evaluate the performance of the
unsupervised L-hypersurface method [5] in selecting a good
set of regularization parameters for our specific application.
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IV. THE L-HYPERSURFACE METHOD

A. Principle

The L-hypersurface method is a method for the optimization
of regularization parameters in global cost functions used
for the resolution of ill-posed inverse problems [5]. It gen-
eralizes the L-curve method introduced by Hansen [3] for
the optimization of a single regularization parameter in ill-
posed problems to the optimization of multiple regularization
parameters. This method requires the minimization of the cost
function associated to the inverse problem of interest (Ω) for
a wide range of sets of regularization parameters. For each set
of regularization parameters Λi, a solution f∗Λi

and its cor-
responding cost function value Ω(f∗Λi

) is obtained. Once the
screening of the sets of regularization parameters is finished,
the (N+1)-dimensional hypersurface corresponding to the plot
of the data-fidelity term as a function of the N regularization
terms of the global cost function must be displayed. This plot
must be drawn in an appropriate scale, generally a decimal
logarithm or a square root scale. In our case, the hypersurface
corresponds to the plot of the data fidelity term, Φ(f∗Λi

), as
a function of the spatial and temporal regularization terms,
Ψs(f

∗
Λi

) and Ψt(f
∗
Λi

), where each point is associated to a
given set of regularization parameters Λi = (λsi , λti).

The shape of the hypersurface obtained will then determine
if the L-hypersurface method can be used or not for the given
application under consideration. The method can only be used
in cases where the hypersurface takes a distinctive bent-shape
[5], hence the name of L-hypersurface method. The corner of
the bend will be more or less well-defined depending on the
scale and particular regularization method used as well as on
the difficulty intrinsic to the specific data under consideration.
In favourable cases, the upper part of the bend corresponds to
solutions that are over-smoothed, with a corresponding cost
function which has small regularization terms but a large
data-fidelity term. The lower part of the bend corresponds to
solutions that are under-smoothed, with a corresponding cost
function which has large regularization terms but a small data-
fidelity term. The corner of the hypersurface is considered
to give the best compromise between a good fit to the data
and a reasonably smooth solution. The optimization of a
N-dimensional set of regularization parameters with the L-
hypersurface method therefore simply consists in selecting the
set of regularization parameters Λcorner associated with the
corner of the hypersurface.

B. Performance

In this study, we screened, for each simulation, 1568 sets
of regularization parameters Λ with λt varying from 10−4 to
105 and with λs varying from 10−7 to 103. We applied a dec-
imal logarithm transformation and normalized each dimension
separately between 0 and 1 before plotting the hypersurface.
Note that this results in using a different scale – γx, γy and γz
– for each dimension. As illustrated in Fig. 2, the hypersurface
obtained presented a clear bent-shape for all simulations (no
matter the shape of the 2D-label image used), which ensures

Fig. 2. Global view of the hypersurface and zoom of the corner region.
Hypersurface obtained with the synthetic data described in section II when
the deconvolution algorithm described in Eq. 2 is used (Top) or when
the deconvolution algorithm described in Eq. 3 is used (Bottom). The star
corresponds to the optimum, the circle to the true corner of the hypersurface
and the diamond to the automatically detected corner.

that the L-hypersurface method is applicable in our specific
context.

Now that the applicability of the L-hypersurface method in
our specific context has been verified, we need to evaluate the
quality of the set of regularization parameters Λcorner chosen
by the L-hypersurface method (cf circle in Fig. 2) by compara-
ison to the true optimal set of regularization parameters Λoptim

(cf star in Fig. 2), defined as the set minimizing the MAPE
quality criteria (cf Eq. 1). For all simulations, the optimal set
of regularization parameters was never exactly positioned in
the corner of the L-hypersurface, but always fairly close to
it (cf Fig. 2 for illustration). We propose here to use as a
quantitative performance indice of the L-hypersurface method
for selecting a good set of regularization parameters the indice
PI which corresponds to the difference between the quality of
the results obtained after deconvolution when using the set
of regularization parameters selected with the L-hypersurface
method and of the results obtained when using the true optimal
set of regularization parameters:

PI = MAPEΛcorner −MAPEΛoptim . (4)

In order to account for the variability due to noise, we
deconvolved 30 different noise realizations (for each label
image shown in Fig. 1) with both Λoptim and Λcorner and
calculated for each of them the performance indice’s value. A
summary of the results obtained after deconvolution with the
upgraded version of the deconvolution algorithm is given in
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TABLE I
MEAN ± SD OF THE PERFORMANCE INDICE (%) DEFINED IN EQ. 4

OBTAINED OVER 30 NOISE REALIZATIONS FOR EACH OF THE DIFFERENT
2D-LABEL IMAGES.

L1 L2 L3 L4
PI 4.0 ± 0.1 3.2 ± 0.1 3.9 ± 0.2 5.1 ± 0.2

Table I. In average, we found a 4.05 % quality difference
between the CBF map obtained after deconvolution with
Λoptim and Λcorner. This quality drop is reasonable and the
L-hypersurface method appears to constitute a very simple
and satisfying method for the selection of our regularization
parameters. For the results given in Table I however, the
hypersurface corner was manually detected based on a visual
inspection and we will now address the question of the
automatic detection of this corner.

V. AUTOMATION OF THE OPTIMIZATION

A. Automation method

The automation of the corner detection in the L-
hypersurface method has been discussed in [5] where they
defined the corner as the point closest to a judiciously chosen
origin (x0, y0, z0). However, a robust mean of selecting this
origin in cases where there is more than one regularization
term was not detailed. We propose here a new method for
the automatic selection of this origin and hence the automatic
detection of the corner. We noticed a considerable difference in
the shape of the under-smoothed region between the hypersur-
face computed after deconvolution with the original algorithm
and those computed with the algorithm containing the non-
negativity term. In the latter case, the under-smoothed region
appears atrophied (cf Fig. 2, bottom). We therefore propose
a slight difference in the origin selection method depending
on the deconvolution algorithm used. The proposed method is
divided into two steps :

1. The first step of our method is to detect the most
likely candidates for the corner. i) Initialize the set of corner
candidates SCC to the points which are neither in the highest
over-smoothed region (arbitrarily defined as Sover-smoothed =
{(xi, yi, zi)|zi > 75

100}) nor in the highest under-smoothed
region (arbitrarily defined as Sunder-smoothed = {(xi, yi, zi)|zi <
15
100}). ii) Conduct a principal component analysis on the data
points and select between the first and second principal plane,
the plane P closer to the diagonal plane of normal vector
[1,1,0] and positioned such that 60% of points are below the
plane. Discard from the set of corner candidates SCC the
points that are above the plane. An illustration of this step
is given in the upper part of Fig. 3.

2. The second step of our method is then to compute the
origin (x0, y0, z0). In order to do so, we will use the points
with high z-values to choose x0 and y0, and the points with
low z-values to choose z0. Since the hypersurface is sometimes
contorted we will also use the principal directions to correct
the position of the origin. i) Compute Xb = (xb, yb, zb), the
mean coordinates of all the data points having a z-value higher

Fig. 3. Illustration of our method for the origin selection. (Top) Illustration
of step 1. The points in white correspond to the points in the highest over-
or under-smoothed regions. The points in red, below plane P (in gray),
correspond to the set of corner candidates selected at the end of step 1.
(Bottom) Illustration of step 2.iii) which corresponds to the projection of
Xb on the first principal plane passing through Xc.

than the maximum z-value of the corner candidates. ii) Com-
pute Xc = (xc, yc, zc), the mean coordinates of all the data
points having a z-value lower than the minimum z-value of
the corner candidates. iii) Compute Xpb = (xpb, ypb, zpb) the
projection of Xb on the first principal plane passing through
Xc (cf Fig. 3, bottom). iv) Compute Xpc = (xpc, ypc, zpc) the
projection of Xc on the first principal plane passing through
Xb. v) Set x0 = (xb + xpb)/2, y0 = (yb + ypb)/2 and
z0 = (zc + zpc)/2 for the deconvolution algorithm with
the non-negativity term or z0 = min(z ∈ SCC) for the
deconvolution algorithm without the non-negativity term.

2016 24th European Signal Processing Conference (EUSIPCO)

1711



(a) (b)

(c) (d)

Fig. 4. (a+b+c) Percentage error 100∗
(

ĈBFv − CBFv

)
/CBFv of the CBF

value computed after deconvolution with the algorithm described in Eq. 3 , (a)
when the optimum set of spatio-temporal regularization parameters is used,
(b) when the set corresponding to the true corner of the L-hypersurface is
used and (c) when the set corresponding to the automatically detected corner
is used. (d) Shows the results obtained when only a temporal regularization
term is used in the deconvolution algorithm, which corresponds to one of the
most commonly used algorithm for the time being.

B. Performance of the method

Fig. 2 illustrates the performance of our corner detection
method. The detected corner, the gray diamond on the figure,
seems relatively well positioned, although not exactely on the
true corner of the hypersurface. We calculated for all hyper-
surfaces RI = ‖X�−X◦‖2

‖X∗−X◦‖2 , the ratio of the distance between
the coordinates X◦ of the true corner of the hypersurface
and X� of the detected corner and the distance between the
coordinates X◦ of the true corner of the hypersurface and the
coordinates X∗ for the optimal set of regularization parame-
ters. In average we found a value of 0.4 which demonstrates
the good performance of our automatic detection method.
Fig. 4(a+b+c) illustrates the performance of the deconvolution
algorithm presented in Eq. 3 when the different strategies
for choosing the regularization parameters are used. Fig. 4(d)
shows the result obtained with a deconvolution containing
the temporal regularization term only. As one can see, the
spurious artifacts present after deconvolution with a temporal
regularization only are eliminated after deconvolution with a
spatio-temporal regularization.

VI. CONCLUSION

We have tested the use of the L-hypersurface method, with
a new corner detection method, to automatically adjust in an

unsupervised manner the spatio-temporal regularization pa-
rameters in the deconvolution of DSC-perfusion MRI of acute
stroke patients. We evaluated the performance of this method
with a numerical simulation approach, allowing a quantitative
evaluation of the method. We are currently completing this
approach with tests on real data such as those proposed
in [1] for clinical prediction outcome [6]. The obtained re-
sults demonstrate that the automatically obtained solutions
are satisfactorily close to the in-silico ground truths. This
constitutes promising results for the dissemination of the new
deconvolution algorithm with spatio-temporal regularization
proposed by [1] and its upgraded version proposed here, which
is known to outperform the techniques currently implemented
in clinical imaging platforms which only use a purely temporal
regularization. In future research, we believe it would be very
interesting to extend our automatic method for the detection of
the hypersurface corner by taking into account the information
on the hypersurface curvature. The corner corresponds to the
point of maximum curvature in a locally convex region [3]
and we therefore expect the addition of information on the
curvature to improve the performance of our method.
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