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Abstract—In this paper, we propose a novel scheme for image
restoration (IR) employing a sequential decoding technique based
on a tree search, known as Stack algorithm. The latter is a
well-known method used for 1D signal decoding in wireless
communication systems. The main idea is to extend the Stack
algorithm for image restoration (2D) and to exploit the informa-
tion diversity conveyed by the channels (Multichannel) in order
to restore the original image. To deal with the noisy case, a
regularization term is introduced using the total variation and
the wavelet transform. This method was tested on artificially
degraded images (blurred and noisy). Obtained results confirm
the relevance of the proposed approach.

Keywords: Image restoration, Multichannel, Sequential de-

coding, Stack algorithm, Regularization.

I. INTRODUCTION

In this work we focus on applications where the recorded

images are degraded forms of the initial scene due to flaws

in the imaging and capturing process. It is vital to many

of the subsequent image processing tasks to neutralize these

flaws. One should consider an extensive variety of different

degradations for example blur, noise, geometrical degrada-

tions, illumination and color imperfections [1] [2].

Image restoration (IR) from blurry and noisy observations

is an important research field in image processing ranging

from computer sciences, electronic engineering and remote

sensing to medical and biology sciences. Image restoration

from observations is a linear inverse problems that requires

the determination of the unknown input to a linear system

from the known output.

The IR is an ill-posed and ill-conditioned problem so it

becomes necessary to take advantage of all kind of available

information including the diversity gain associated with multi-

channel (MC) image processing. Preliminary results of multi-

channel deconvolution were first found in the one dimensional

(1D) case, then extended to the two dimensional (2D) one. In

the multichannel framework, several images are observed from

a single scene that passes through different channels. Some

applications where multichannel techniques could be used

include: polarimetric, satellite, astronomical and microscopic

imagery [3].

On the other hand, sequential decoding is a technique that

was initially used in communication systems with noisy chan-

nels to restore transmitted signals using tree search algorithms.

Several decoding methods exist in the literature including

the Sphere Decoding (SD) [4] and the Stack algorithms [5].

The sphere decoding is an optimal lattice search technique

but suffers from high computational complexity for large

lattice dimension (which is the case in 2D image restoration

problems). Alternatively, the Stack algorithm is an efficient

and powerful tree search technique able to perform the desired

signal decoding with a reduced complexity as compared to

SD. Originally, the Stack algorithm was introduced as a

low decoding complexity method for approximate maximum-

likelihood (ML) signal estimation in communication systems.

In this paper, we use the Stack algorithm to achieve mono or

multi-channel IR. At first, we show how the standard algorithm

can be adapted and used properly in our context (2D). Then, to

reduce further the computational cost, we introduce modified

(faster) versions of the Stack algorithm by exploiting the

‘band-limited’ property of the filtering matrix together with

a hierarchical decoding approach. Finally, to deal with the

additive noise, we add appropriate regularization terms to the

cost function and illustrate the overall algorithm’s performance

through numerical simulation experiments.

II. PROBLEM STATEMENT

In the case of multichannel systems, a single image passes

through K independent channels (K > 1) leading to K noisy

blurred images given by:

gi(m,n) = hi(m,n) ⋆ f(m,n) + wi(m,n) (1)

=

mh−1
∑

l1=0

nh−1
∑

l2=0

hi(l1, l2) f(m− l1, n− l2) + wi(m,n)

for m = 1, · · · ,mg and n = 1, · · · , ng , where f denotes the

source image and gi, wi, hi for i = 1, · · · ,K, denote the

observed images, noise matrices and point spread functions

(PSF)1, respectively. The latter filters are assumed known

(or a priori estimated) and different enough to satisfy the

diversity condition in [6]. By vectorizing the above matrices

and stacking them into a single vector, we obtain:

g = [gT
1 , g

T
2 , ..., g

T
K ]T = H f +w (2)

with H = [HT
1 , ...,H

T
K ]T , Hi being the filter Toeplitz matrix

with Toeplitz blocks associated to the PSF hi expressed by:

1For simplicity, we adopted here a causal notation for the filters hi.

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1293



Hi =







Hi(0) · · · Hi(mh − 1) 0
. . .

. . .

0 Hi(0) · · · Hi(mh − 1)







with

Hi(n) =







hi(n, 0) · · · hi(n, nh − 1) 0
. . .

. . .

0 hi(n, 0) · · · hi(n, nh − 1)







The objective of the considered image restoration problem

is to find an estimate f̂ of the original image from observed

images gi using a maximum likelihood (ML) approach.

If we assume that the additive noise vectors w are white

and Gaussian, then we can express the ML detection problem

as the minimization of the squared Euclidean distance metric2:

f̂ = argmin
f∈A

‖g −H f‖22 (3)

where A represents the lattice associated to the gray level

pixel values in the range [0, 255]. By applying a standard QR

decomposition of the filter Toeplitz matrix H , the previous

least squares problem can be rewritten as:

f̂ = argmin
f∈A

‖g′ −R f‖22 (4)

where g′ = QTg and R is the square upper triangular matrix

obtained from the previous QR decomposition.

III. SEQUENTIAL STACK DECODER

A. Standard Stack Algorithm

The Stack algorithm is a tree search decoder that attempts to

find a best fit using the observed blurred noisy images. In this

section, we briefly introduce the steps of the Stack algorithm.

Before proceeding with the description of such an algo-

rithm, we shall discuss the metric measure for the sequential

decoding. It is basically based on the path metric M which

is, at a kth level of the tree, defined as:

M(fk) =
∥

∥

∥g′k −Rkk fk
∥

∥

∥

2

2

(5)

where fk = [fk, . . . , f2, f1]
T denotes the last k components

of the vector f , Rkk is the lower k x k part of the triangular

matrix R, g′k is formed by the last k components of g′.

In the Stack algorithm, to determine a best fit (path) along

the tree, a value is assigned to each node in the tree. This

value is called the metric which is given by Eq. (5).

The mechanism of the Stack algorithm is described in the

flowchart of Fig.1. To obtain the best and next best nodes,

the Schnnor-Euchner enumeration [7] is used to generate

nodes with metrics in ascending order. The decoding algorithm

terminates when the top path in the stack reaches the end of

the tree [8].

2This metric would be the l1-norm if the noise is Laplacian.

Fig. 1. Flowchart of the Stack decoding

The Stack decoder is applied on a d-ary tree with d = 256,

where each node represents a value of the gray level of the

image and each level of the tree represents a value of a pixel

to estimate.

In summary, the algorithm steps are as follows:

• At the beginning, the stack contains only the root node

of the tree (i.e., the empty path) with its path metric L0

set arbitrarily to zero.

• A decoding operation consists to find the path Si that

corresponds to the metric Li at the top of the stack, elim-

inating Li from the stack, computing the metrics l1i+1, ...,

ldi+1 of the branches that leave the end node of the path

Si, and inserting the new path metric Li
i+1 = Li + lii+1,

i = 1, 2, ..., d, into their proper positions according to

size.

• The search ends when the decoder finds at the top of the

stack a path whose length is equal to the size of the tree.

B. Improved Stack Algorithm

One of the major problems in image restoration is the

algorithm’s time complexity. Therefore, in this section we

present a reduced cost version of the Stack algorithm. The

proposed improvement is based on two main features, the

structure of the convolution matrix H and the number of

classes in the tree. These features are explained in details in

the following:

1) Band Limited Matrix: As the convolution matrix H is

band-limited, we obtain after the QR decomposition an upper

triangular matrix R with a limited band (see Fig.2). In fact,

the band size B of the triangular matrix R depends both on

the size of the degraded image [mg ng] and the convolution

kernel [mh nh], according to the following formula:

B = mh nh + (mh − 1) (mg − 1) (6)

At this stage, when the least squares criterion are optimized,

only the (B) non-zero elements are used in the matrix-vector
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product, this enables reducing significantly the computational

cost as illustrated in section V.

Fig. 2. Band Limited Matrix Structure

2) Hierarchical Approach: Instead of searching in the

whole grayscale level range [0, 255], the interval is divided

into 2N classes (N < 8). For each class we assign to the node

the value of its center. Therefore, the tree search is done in

two steps: gross and refined searches. Therefore, the branch

metric to minimize per node becomes:

f̂ = argmin
f∈A

∥

∥g′ −R (fG + fR)
∥

∥

2

2
(7)

where fG refers to the main image vector (which entries

belong to the 2N -length alphabet) while fR is the refined

component of the restored image taking values in a 28−N

elements alphabet.

Step 1: a tree search is conducted considering the lattice

associated to the 2N classes

f̂G = arg min
f∈AG

∥

∥g′ −R fG

∥

∥

2

2
(8)

Step 2: this step consists of refining our IR according to

f̂R = arg min
f∈AR

∥

∥ĝ −R fR

∥

∥

2

2
(9)

where ĝ = g′ −R f̂G.

The resulting image of this hierarchical approach is given

by the sum of the two estimated images

f̂ = f̂G + f̂R

IV. THE REGULARIZATION MODEL

In this section, we introduce in our system a regularization

model that combines two approaches to restore images from

blurry and noisy observations [9]:

• Total variation (TV) regularization is a technique that

was originally developed by Rubin, Osher, and Fatemi

(ROF) [10] for image denoising and deblurring. The

TV regularization approach has been proven to be very

effective in preserving sharp edges and object boundaries

which are usually the most important features to recover.

• Wavelet frame (WF) regularization is a technique that

ensures a full use of sparsity prior information and

enables adaptive exploitation of the image regularity.

From Eq. (4) and under the combination of the discrete total

variation and the wavelet transform regularizations, our model

of restoration can be performed by the following minimisation

problem:

f̂ = argmin
f∈A

∥

∥g′ −R f
∥

∥

2

2
+ α

∥

∥∇f
∥

∥

TV
+ β

∥

∥Wf
∥

∥

1
(10)

where ∇ is the discrete gradient, W is the discrete wavelet

transform,
∥

∥.
∥

∥

TV
is a discrete TV norm, α and β are two

positive regularization parameters that balance the three terms

for minimisation and provides a trade-off between fidelity to

measurements and noise sensitivity.

On one hand, for a given image f ∈ R
mf×nf , the discrete

gradient is defined as ∇f = (∇1f ,∇2f), where ∇1 and ∇2

are two linear differential operators given by







∇1f(i, j) = f(i+ 1, j)− f(i, j), i = 1, ..,mf − 1
j = 1, .., nf

∇1f(mf , j) = f(1, j)− f(mf , j), j = 1, .., nf

(11)

and






∇2f(i, j) = f(i, j + 1)− f(i, j), i = 1, ..,mf

j = 1, .., nf − 1
∇2f(i, nf ) = f(i, 1)− f(i, nf ), i = 1, ..,mf

(12)

The TV of f is defined as:
∥

∥f
∥

∥

TV
=

∑

∥

∥∇f
∥

∥

2
=

∑

√

(∇1f)2 + (∇2f)2

where
∑

denotes the sum taken over all pixels.

On the other hand, the wavelet transformation can be seen

as a matrix-vector multiplication from a linear algebra point

of view. The details about how to generate the WF transform

are given in [11].

Note that the regularization terms in (10) do not have

the appropriate form for a criterion optimization with the

Stack algorithm. For this reason, we introduce the following

approximations:

For the WF term, we replace the matrix W by RW , the

upper triangular matrix given by the QR decomposition of W .

The TV-based regularization term is of the form ‖g(∇f)‖2
where g is an element-wise non-linear function and ∇ is an

appropriate filtering matrix used for the horizontal and vertical

gradient calculations in (11) and (12). Again, to fit the Stack

algorithm structure, we replace the matrix ∇ by the upper

triangular matrix R∇ obtained from its QR decomposition.

In our simulations, we have observed that these modifications

have only a little impact on the regularization performance.

V. SIMULATION RESULTS

In this section, results of our proposed method based on the

sequential Stack decoder are presented. For all experiments,

images were generated by applying first the blur kernel on each
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of them and then adding additional Gaussian white noise with

various standard deviations (STD). Moreover, the Peak Signal

to Noise Ratio (PSNR) in dB and the Structural SIMilarity

index (SSIM) were used for comparison purposes. SSIM index

is shown to be a more reliable metric for comparison of

restoration algorithms than the widely used PSNR measure

[12].

PSNR = 10× log
2552

MSE
[dB] (13)

SSIM =
2µfµg + C1

µ2
f + µ2

g + C1
×

2σfg + C2

σ2
f + σ2

g + C2
(14)

where MSE is the Mean-Squared-Error per pixel, (µf , µg) are

the mean and (σf , σg) the variance of f and g, respectively.

(σfg) the covariance of f and g. C1 and C2 are small

constants set equal to 0.01 and 0.03, respectively.

A. Noiseless Case: Deblurring

In this subsection, we perform some numerical experiments

in image restoration in the noiseless case. The original images

(A: Cameraman (256× 256)) and (C: Lena (512× 512)) were

here blurred using motion blur with the linear motion by 20

pixels in the direction of 45 degrees and Gaussian blur of size

[3, 3] with standard deviation (σ = 10). The restored images

are shown in Fig.3, where (A: MSE = 1.0438, PSNR =
24.93 dB) and (C: MSE = 4.9171, PSNR = 22.64 dB) are

the blurred images and (B) and (D) are their perfectly restored

versions with MSE and SSIM equal respectively to 0 and 1
for both.

Fig. 3. (A)-(C): Blurred images, (B)-(D): Deblurred images with the Stack
algorithm.

B. Noisy Case Multichannel IR

In this simulation, the original image (Cameraman (256 ×
256)) was blurred by Gaussian blur (σ = 1.5) and then

corrupted by a Gaussian noise with SNR = 25 dB.

First, Fig.4-A presents the restored image using our algo-

rithm (without regularization) in the mono-channel case (A:

MSE = 0.1392, PSNR = 8.56 dB, SSIM = 0.1901). The

results of the restoration in the multichannel (K = 3) are pre-

sented in Fig.4-B (B: MSE = 0.1060, PSNR = 9.7478 dB,

SSIM = 0.5411). The obtained results are clearly improved

due to MC diversity which helps improving the conditioning

of the matrix H . However, the noise effect is still important

and regularization is needed for a better IR.

Fig. 4. (A): Mono-channel restored image, (B): Multichannel restored image.

C. The Need of Regularization

In this section, the obtained results using the two regulariza-

tion terms (total variation and wavelet transform) are presented

(Eq.10). First, the two regularization parameters (α and β),

which control the trade-off between these terms and represent

the amount of regularization, are set on an ad hoc basis to 1e−2

and 1e−1, respectively. Fig.5 shows the effects of regulariza-

tion (without regularization-A: MSE = 0.1060, PSNR =
9.7478 dB, SSIM = 0.5411) and (with regularization-B:

MSE = 0.1056, PSNR = 9.7644 dB, SSIM = 0.6019).

It’s clear that the IR is improved. However, the algorithm’s

robustness to noise with dedicated regularization approaches

has to be investigated further.

Fig. 5. (A): Restored image without regularization, (B): Multichannel restored
image with regularization.
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TABLE I
COMPARISON OF IMAGE QUALITY (SSIM) AND COMPUTING TIME (CT)

FOR DIFFERENT SCHEMES

SSIM SSIM (%) CT (s) CT (%)

Stack 1 100 252.215 100

Stack (32 classes) 0.974 97.48 15.057 5.97

Stack (64 classes) 0.984 98.48 21.013 8.33

D. Improved Stack Algorithm

1) Band Limited (BL) Matrix: The Stack algorithm (with

and without the exploitation of the band limited structure) was

applied to a portion of the image (Cameraman (50 × 50))

blurred by a Gaussian blur of size [3, 3] and corrupted by

a Gaussian noise. We run 100 Monte Carlo simulations of

noise for different values of the Signal-to-Noise Ratio in

the set {5, 10, 15, 20, 25, 30, 35, 40}dB. Fig.6 illustrates the

computational cost gain of about 77% when we exploit the

band limited structure of the triangular matrix R.

Fig. 6. Time Complexity of the Stack algorithm (without (red) and with
(blue) use of BL structure)

2) Hierarchical Approach: This hierarchical approach is

applied to images affected by three types of blur (Fig.7):

motion blur with the linear motion by 3 pixels in the direction

of 30 degrees and Gaussian blur of size [3, 3] with standard

deviations (σ1 = 1.5, σ2 = 5).

Table I shows the little loss in quality of restoration (-1.52%

for 64 classes, -2.52% for 32 classes) compensated by the

huge gain in computational cost (-91.67% for 64 classes, -

94.03% for 32 classes). An optimal choice for N (i.e. number

of classes of the first step) combined with an enlarged search

range interval for the refining stage (i.e. second step) is a

potential source of additional improvement, currently under

study.

VI. CONCLUSION

In this paper, we focused on a new technique for IR

inspired from ML deconvolution in communication systems

and based on the sequential Stack decoder. To reduce the

computational cost, two approaches have been considered

based on the BL structure of the filtering matrix and on

a two-stage (hierarchical) restoration technique, respectively.
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Fig. 7. IR with hierarchical approach with N=5. Blurred images (top) and
original, gross and refined images (bottom from left to right).

In addition, to take into account the additive noise effect,

appropriate regularisation terms have been added to the cost

function. Finally, the paper provides numerical evaluations

which reveal the good IR performance of the method and the

significant computational cost reduction given by the proposed

algorithm modifications.
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