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Abstract—There has been a significant research attention for
unsupervised representation learning to learn the features for
speech processing applications. In this paper, we investigate unsu-
pervised representation learning using Convolutional Restricted
Boltzmann Machine (ConvRBM) with rectified units for speech
recognition task. Temporal modulation representation is learned
using log Mel-spectrogram as an input to ConvRBM. ConvRBM
as modulation features and filterbank as spectral features were
separately trained on DNNs and then system combination is used.
With our proposed setup, ConvRBM features were applied to
speech recognition task on TIMIT and WSJ0 databases. On
TIMIT database, we achieved relative improvement of 5.93%
in PER on test set compared to only filterbank features. For
WSJ0 database, we achieved relative improvement of 3.63-4.3
% in WER on test sets compared to filterbank features. Hence,
DNN trained on ConvRBM with rectified units provide significant
complementary information in terms of temporal modulation
features.

Index Terms—Convolutional RBM, temporal modulations,
speech recognition, deep neural networks.

I. INTRODUCTION

For any speech processing applications, representation of
speech signal requires significant attention. As discussed in
[1], a good representation of speech signal helps supervised
pattern recognition tasks for several speech research problems.
For speech recognition task, significant amount of studies have
been done to design features of which widely used features
include Mel Frequency Cepstral Coefficients (MFCC) [2] and
Perceptual Linear Prediction (PLP) coefficients [3]. Many
earlier attempts for feature vector design include handcrafted
features which either perform better than MFCC (or PLP)
or capture complementary information so as to improve the
results of Automatic Speech Recognition (ASR) by appending
it with MFCC (or PLP), i.e., feature-level fusion or using
system-level combination. These features are mainly based
on concepts of speech perception and/or speech production
mechanism. However, they do not make use of the amount of
information in speech data (to be used to train models) itself.

Representation learning for speech processing applications
is an active area of research which makes effective use of
speech data. Approaches for representation learning include
supervised and unsupervised (where the labels of speech sound
units are not available). Recent supervised feature learning
techniques along with acoustic modelling include work re-
ported in [4]-[7]. Unsupervised learning is most important
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form of deep learning as human learning is largely unsuper-
vised [8]. For example, language acquisition by the infants
during initial stages of their growth, is a type of unsupervised
learning. There has been number of attempts for unsupervised
feature learning either directly from raw speech signal [9]-
[12], or from time-frequency representation of speech signal
[13]-[17].

Recently, we have proposed unsupervised learning model
based on convolutional RBM (denoted as ConvRBM) to learn
filterbank directly from raw speech signals [12]. We have
shown that ConvRBM is able to model human auditory system
with subband filters resemble gammatone signals and shown to
improve recognition performance in various ASR tasks [18].
In this paper, we have used ConvRBM to learn modulation
representation from Mel spectrograms. Our model is different
than the one used in [19] in terms of type of hidden units.
We have proposed to use rectified linear units (ReLU) as
hidden units activation function and for inference in the
model. We have used a system combination framework for
Mel filterbank features and modulation features learned by
ConvRBM. Experiments on TIMIT and WSJO databases show
significant reduction in error rates with this system combi-
nation framework over baseline DNN trained on filterbank
features alone.

The rest of the paper is organized as follows: Section II
presented the brief theory of ConvRBM. Analysis of the model
and feature representation is presented in Section III. Details
of system combination is given in Section III-C. Section IV
and V present experimental setup and results. Finally, paper
is summarized in Section VI.

II. CONVOLUTIONAL RBM

To improve the scalability of RBM [20], it was extended in
convolutional framework following the idea of Convolutional
Neural Networks (CNNs) [21]. In ConvRBM, weights between
hidden units and visible units are shared among all the loca-
tions in hidden layer [14]. The input v to the ConvRBM is the
time-frequency representation of speech (of entire utterance)
with s = 1,2, ..,.5 subbands and ny frames. Hidden layer (h)
consists of K filters each of nyy-dimensional (i.e., ny — D)
filter weights WX (also called as bases [19]). Hidden layer is
divided into K groups of ng-D (where ng = ny —nw + 1
length of ‘valid’ convolution) array. All units in the k" group
share the weights W Biases are also shared in hidden layer
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and visible layer denoted as by and c, respectively. The energy
function for ConvRBM with visible units v; and hidden units
h% is defined as [19],
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The joint probability distribution in terms of this energy
function is given by [14],
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The response of the convolution layer for the k-th group is
given as [14]:

P(v,h)

Iy = (v« WE) + by, 3)

where * denotes ‘valid’ length convolution operation and Wk
denotes filpped array (for convolution operation). The response
of all K-groups [I1, I, ..., [x]T is K xny-dimensional matrix.
In case of sigmoid units, the conditional distribution of hidden
layer is defined as follows [14]:

PR = 1[v) = sigmoid((W* sv), +bi). @

Recently, it is shown that rectified units perform better than
sigmoid units in unsupervised as well as supervised networks
[22], [23], [12]. Hence, we have used Rectified Linear Units
(ReLUs) as activations in hidden layer instead of sigmoid
units. For sampling from hidden units noisy ReLU is used
as shown in [22]. Sampling equations for hidden and visible
units are given as [12],

h* ~ maz (0, I + N(0,0(I1))),

v~ N (ZK:(hk

k=1

5
*Wk)—&—c,l), ©)

where N(0,0(I;)) is a Gaussian noise with mean zero and
sigmoid of Ij as it’s variance. During feature extraction
stage (i.e., testing stage), we have used deterministic version
of ReLU activation max (0, I;). The block diagram of our
proposed model is shown in Fig.1. The input to ConvRBM
is Principal Component Analysis (PCA) whitened log Mel-
spectrogram extracted from the speech signal. Whitening the
data using PCA gives approximation to sub-cortical processing
which was observed in auditory cortex [24]. From Fig.1, we
can see that ReL.U nonlinearity force many hidden units to
be zero and hence, increase sparsity in features [25]. Since
the ConvRBM representation is overcomplete (more number
of bases than dimension of input), sparsity penalty term is
added [14]. Inference in ConvRBM is done using block Gibbs
sampling. Gradient computation is performed using contrastive
divergence which approximates the gradient term effectively
[26]. Weights and biases are updated using gradient-descent
algorithm as done in [12].

Mel spectrogram

BT

PCA whitening

Convolution
layer

I+ ve
Hidden unit

nonlinearity
ve

Fig. 1. Block diagram of input representation and proposed ConvRBM model.

III. ANALYSIS AND FEATURE REPRESENTATION
A. Analysis of Learned Subband Filters

The filters learned in ConvRBM are visualized by apply-
ing inverse of PCA whitening on the ConvRBM weights.
Since convolution is applied in temporal-domain (for each
subbands), subband filters represent Temporal Receptive Fields
(TRFs) [19]. Examples of TRFs learned on TIMIT database
are shown in Fig. 2 where each block represents one TRF.
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Fig. 2. Examples of ConvRBM filters.

Unlike cells in visual cortex, all Receptive Fields (RFs) in
auditory cortex are not localized [27]. Receptive fields in Al
exhibit multiple characteristics as certain cells demonstrate
responses from multiple frequencies [24]. Here, we observe
similar behavior of TRFs. From Fig. 2, it can be seen that
some of the filters are highly localized along Mel frequency-
axis (e.g., Al and A2) while some filters are broadly distributed
(e.g., BI, B2 and B3). Some filters have strong localized exci-
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tatory and inhibitory regions (e.g., CI and C2) while few have
checkerboard-like pattern (e.g., DI and D2). Similar patterns
of RFs were also found in Spectro-temporal Receptive Fields
(STRFs) in auditory cortex [13]. Hence, ConvRBM subband
filters capture temporal modulation information with different
subband modulation frequencies from log Mel spectrograms
[28]. As shown in [19] each subband filter may represent
temporal variations in different phonetic units.

B. Rectified Linear Units (ReLU) in ConvRBM

We justify the use of ReLUs in ConvRBM by visualizing
the reconstructions from the model using both non-linearity
as shown in Fig. 3. It can be evident that reconstruction
from sigmoid units is more noisy (shown in dotted circles)
compared to original spectrogram and the one reconstructed
using ReLU. This noise is due to saturation of neurons and
vanishing gradient effect in case of sigmoid non-linearity
which may affect ASR performance. In case of ReLUs, hidden
units are not binary rather neurons can take any value from O
to oo and hence, can better represent the input signal.

[AN
S
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n

Filter index

Filter index

Frame index

Fig. 3. Log Mel-spectrograms (a) original, (b) reconstructed using sigmoid
units, (c) reconstructed using ReLUs. Dotted regions shows saturation effect
in sigmoid units.

C. Feature Extraction and System Combination for ASR

Since ConvRBM filters capture temporal modulation infor-
mation, we can use this along with standard spectral features,
Mel frequency filterbanks (denoted as FBANK). We trained
both features on separate DNN and use system combination
technique. We have used Minimum Bayes Risk (MBR) tech-
nique for system combination which is very helpful when
two different feature stream may represent complementary
information [29]. Lattices generated by N different systems
are combined to get optimal word sequence as follows [29]:

N
W* =argmin{ » A Y Pi(W/[O)L(W,W') 5, (6)
w =1 w'’

where L(W,W’) is the Levenshtein edit distance between
two word sequences, P;(W’'|0) is the posterior probability
of the word sequence W’ given the acoustic observation
sequence O and ); is the weight assigned to i*" system. Our

feature extraction and system combination method is shown

in Fig. 4. First pipeline is to extract FBANK features and
their delta features to train DNN which we denote spectral
feature trained DNN. Second pipeline is to extract temporal
modulation features from trained ConvRBM and train DNN on
these features which we call modulation feature trained DNN.
Generated lattices from both DNN systems are combined (with
A = 0.5) using MBR decoding and then used for scoring.

Log Mel-spectrogram

\

+ Delta
features

] (oo )B

Spectral feature Modulation feature
trained DNN trained DNN
\ \

[ MBR system combination ]

Scoring

Fig. 4. Block diagram for feature extraction and system combination
framework.

IV. EXPERIMENTAL SETUP

A. Speech Databases

Two standard speech databases, TIMIT and subset of Wall
Street Journal (i.e., WSJO), were experimented in this paper.
For phoneme recognition task, we have used phonetically bal-
anced TIMIT database [30]. All SA category sentences (same
sentences spoken by all speakers in database) were removed
as they may bias the recognition performance. Training set
includes 462 speakers, development set includes 50 speakers
and core test set includes 24 speakers. WSJO SI-84 training set
includes 7138 utterances spoken by 84 speakers [31]. Training
data consists of /4 hours of speech data. Standard evaluation
set contains 330 utterances from 8 speakers with 5K-word
WSJ vocabulary denoted as eval92_5K. We have also used
20K-word WSIJ vocabulary test set denoted as eval92_20K.

B. Training of ConvRBM

Log-Mel spectrogram was obtained from speech signal by
framing it with a window length of 25 ms and shift of
10 ms using 40 Mel subband filters. PCA whitening was
applied on all concatenated log-Mel spectrograms. Learning
rate was chosen to be 0.0/ and was decayed at each epoch. As
suggested in [32], L2-norm sparsity regularization on hidden
units was applied with target sparsity 0./ and regularization
constant to be /. For first five training epochs, momentum was
set to 0.5 and after that it was set to 0.9. We trained model on
different number of filters 60, 80 and 120 with different filter
lengths, namely, 6, 8 and 10. These parameters were optimized
based on performance in speech recognition experiments. The
learned weights and biases were used in inference to extract
the features from ConvRBM. The notations for ConvRBM
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using sigmoid and ReLU hidden units are ReLU-ConvRBM
and Sigmoid-ConvRBM, respectively.

C. Hybrid DNN-HMM Systems

Monophone GMM-HMM systems were used to generate
forced-aligned transcriptions for both databases. For these sys-
tems, MFCC features were extracted from speech signal using
25 ms window length and /0 ms window shift. 39-D vector
features were formed by /3-D MFCC followed by delta and
delta-delta features. Acoustic modeling was performed with
hybrid DNN-HMM system in Kaldi [33]. DNN weights were
randomly initialized. All experiments on TIMIT used bi-gram
Language Model (LM) estimated from training set. For DNN
training, /44 target labels (48 phones with 3 states) were used.
During final scoring, 48 phones were mapped to 39 phones
as done in [34]. For WSJO database, language modelling is
performed using tri-gram language model. For training of
DNNs, 732 target labels (44 phones with 3 states) were used
with same learning rate and random weight initialization.

V. EXPERIMENTAL RESULTS
A. ConvRBM Parameter Tuning

Parameters of ConvRBM were optimized using a single
layer neural network trained on ReLU-ConvRBM features
with /500 hidden units and Context Window (CW) of 11/
frames. The parameters of ConvRBM include number of filters
and length of filter. Results of these experiments are reported
in Table I on the TIMIT and WSJO databases in % Phone Error
Rate (PER) and % Word Error Rate (WER), respectively. From
Table I, for TIMIT database, /20 number of filters and filter
length 6 gave lowest % PER. For WSJO database, 60 number
of filters and filter length 6 gave lowest % WER. For large
database, 60 and 120 filters yield almost similar WER and 60
filters are sufficient compared to double the number of filters
for TIMIT database.

Sigmoid-ConvRBM) did not perform well compared to ReLU
units. From eq. (6), the system combination (denoted using &
symbol) of DNNs trained on ReLU-ConvRBM and FBANK
features gave relative improvement of 7.73 % and 5.93 %
on development and test set, respectively. System combina-
tion using Sigmoid-ConvRBM has very low improvement on
development set (4.1 % relative improvement) compared to
ReLU. This shows that DNNs trained on FBANK and ReLU-
ConvRBM contain highly complementary information.

TABLE 11
RESULTS ON TIMIT DATABASE IN % PER. NUMBERS IN BRACKET
INDICATES RELATIVE IMPROVEMENT OVER FBANK-DNN

DNN System Dev Test

A: FBANK 22.0 23.6
B: ReLU-ConvRBM 22.3 (-1.36) | 24.0 (-1.69)
C: Sigmoid-ConvRBM | 23.4 (-6.36) | 25.4 (-7.63)
A®B 20.3 (7.73) | 22.2 (5.93)
AgC 21.1 (4.09) | 22.6 (4.23)

C. Experiments on WSJO Database

Following the results of Table I, we have used parameters
of ConvRBM for WSJO experiments. FBANK and ConvRBM
features were trained using DNNs and results are reported
in Table III in % WER with 3 layers, /500 hidden units
and context-window of /7 frames. From results, we can see
that ReLU-ConvRBM features perform better than Sigmoid-
ConvRBM. We can see that system combination of FBANK
and ReLU-ConvRBM yield relative improvement of 4.3 %
for SK word test set and 3.63 % for 20K word test set
over FBANK features. System combination of FBANK and
Sigmoid-ConvRBM also improved over FBANK. However,
improvement is less compared to ReLU-ConvRBM with rel-
ative improvement of /.48 % on 5K test set and 2.09 % on
20K test set. Hence, both ASR experiments shows that ReL.U-
ConvRBM perform better than Sigmoid-ConvRBM and per-
formance is improved using system combination with FBANK
features.

TABLE I
RESULTS OF CONVRBM PARAMETER TUNING EXPERIMENTS ON TIMIT
DATABASE
Number of filters | Filter length | Dev | Test | eval92_5K

120 6 24.3 | 25.6 7.14

80 6 245 | 25.6 7.57

60 6 24.6 | 25.8 7.10

120 8 245 | 25.7 7.15

120 10 249 | 258 7.20

60 8 248 | 259 7.15

TABLE III
RESULTS IN % WER AND % RELATIVE IMPROVEMENTS ON WSJ0
DATABASE
DNN System eval92_5SK eval92_20K
A: FBANK 6.07 14.32
B: ReLU-ConvRBM 6.52 (-7.4) 15.15 (-5.7)
C: Sigmoid-ConvRBM | 7.44 (-22.57) | 16.16 (-12.84)
A DB 5.81 4.3) 13.80 (3.63)
AaC 5.98 (1.48) 14.02 (2.09)

B. Experiments on TIMIT Database

Two DNNs are trained with setup described in Section
IV-C using FBANK (/20-D) and ConvRBM (/20-D) fea-
tures and results are reported with 3 layers, /500 hidden
units and context-window of /7 frames. The performance of
ConvRBM features alone and with our system combination
setup is reported in Table II. ReLU-ConvRBM features which
represent modulation information, perform similar as spectral
features, FBANK. ConvRBM with sigmoid units (denoted as

VI. SUMMARY AND CONCLUSIONS

We have developed convolutional RBM with rectified units
for unsupervised feature learning using log-Mel spectrograms.
As convolution is applied in time-domain, it learns temporal
receptive fields and hence, represents temporal modulations.
Modulation features learned by ConvRBM is used with spec-
tral features, i.e., FBANK in system combination framework
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using DNN. Experiments on TIMIT and WSJO databases
shows significant improvements when using ReLU-ConvRBM
features in system combination with FBANK. Our future
research work will be directed towards extending this for 2-
D ConvRBM incorporating convolution along frequency-axis.
We also want to use stacks of ConvRBM where one ConvRBM
is for learning filterbank from speech and another for learning
modulation features giving the deep feature learning model.
We would also like to apply this framework for low resource
and noise robust ASR task.
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