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Abstract—The metric in the reproducing kernel Hilbert space
(RKHS) is known to be given by the Gram matrix (which is also
called the kernel matrix). It has been reported that the metric
leads to a decorrelation of the kernelized input vector because its
autocorrelation matrix can be approximated by the (down scaled)
squared Gram matrix subject to some condition. In this paper,
we derive a better metric (a best one under the condition) based
on the approximation, and present an adaptive algorithm using
the metric. Although the algorithm has quadratic complexity, we
present its linear-complexity version based on a selective updating
strategy. Numerical examples validate the approximation in a
practical scenario, and show that the proposed metric yields fast
convergence and tracking performance.

I. INTRODUCTION

Nonlinear adaptive filtering plays an important role in many

applications, including system identification and acoustic echo

cancellation. Among several others, a kernel adaptive filter

has attracted significant attention, and a number of power-

ful kernel-based computational methods have been proposed

[1]–[8]. The existing kernel adaptive filtering algorithms are

classified into two categories from the projection viewpoint

[8]: (i) the parameter-space approach and (ii) the functional-

space approach. The kernel normalized least mean square

(KNLMS) algorithm [9] is a typical example of the parameter-

space approach, and it updates the coefficient vector by using

the projection onto the zero instantaneous-error hyperplane

in a parameter space. The hyperplane projection along affine

subspace (HYPASS) algorithm [10] is a typical example of the

functional-space approach, and it operates the projection in a

functional space. The KNLMS and the HYPASS algorithms

can be regarded as normalized versions of Least Mean Square

(LMS) algorithm [11], [12] for certain different input-output

pairs. The Cartesian HYPASS (CHYPASS) algorithm [6],

[7] is a functional-space approach for multikernel adaptive

filtering.

As the error contours of the mean squared error (MSE)

depend on the autocorrelation matrix of the input vectors

in general, the eigenvalue spread governs the convergence

speed of adaptive algorithms [13]. The previous study [14]

elucidated the mechanism for the reduction of the eigenvalue

spread coming from the HYPASS algorithm. The metric of

HYPASS is naturally induced by the metric in a reproducing

kernel Hilbert space (RKHS). Nevertheless, it is not an ideal

one from the aspect of whitening. The key fact here is that

the autocorrelation matrix of the kernelized input vector can

be approximated by the square of the Gram matrix of the

dictionary subject to a certain condition [14]. A predetermined

dictionary has been used therein to verify the validity of the

theoretical analysis to explain the reduction of the eigenvalue

spread. Although the dictionary of kernel adaptive filters is

constructed online in practice, numerical verifications for this

practical case have not yet been reported.

In this paper, we show the validity of the analysis on

the eigenvalue-spread reduction in a practical situation, and

propose a better metric from the viewpoint of decorrelation

of the kernelized input vectors. We present a kernel adaptive

filtering algorithm that employs the proposed metric. The

proposed metric reduces the eigenvalue spread more than the

one of HYPASS, leading to faster convergence. To reduce the

computational complexity, a low-complexity version of the

proposed algorithm is derived with selective updating. This

significantly reduces the complexity at the expense of slight

performance degradations. Numerical examples show that the

proposed algorithm attains fast convergence and tracking per-

formance compared to the existing kernel adaptive filtering

algorithms.

II. PRELIMINARIES

A. Definitions and System Model

Let R,N, and N
∗ denote the sets of real numbers, nonnega-

tive integers, and positive integers, respectively. We first define

the inner product in the N dimensional Euclidean space R
N

and the metric projection onto a closed convex subset of a

Hilbert space.

Definition 1: Let Q ∈ R
N×N be a positive definite matrix.

the Q-inner product is defined as 〈x,y〉Q := x⊤Qy for any

x,y ∈ R
N , where (·)⊤ denotes a vector (matrix) transpose.

Definition 2: Let X be a real Hilbert space equipped with

a norm ‖·‖X . Then, the metric projection of a point x ∈ X
onto a nonempty closed convex set K ⊂ X is defined as

PK(x) := argminy∈K ‖x− y‖X . (1)

We consider an adaptive estimation problem of a nonlinear

system ψ : U → R, where U ⊂ R
L is the input space. Its

noisy output is given by

dn := ψ(un) + vn, n ∈ N, (2)

where (un)n∈N is a sequence of input vectors and (vn)n∈N

is a sequence of additive noises. The unknown function ψ is

modeled as an element of the reproducing kernel Hilbert space
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(RKHS) H associated with a reproducing kernel κ : U ×U →
R [15], [16]. A kernel adaptive filter can be expressed as

ϕn :=
∑

j∈Jn

h
(n)
j κ(·,uj), n ∈ N, (3)

where h
(n)
j ∈ R and {κ(·,uj)}j∈Jn

is called the dictionary

indicated by Jn = {j
(n)
1 , j

(n)
2 , · · · , j

(n)
rn } ⊂ {0, 1, 2, · · · , n}.

The dictionary is constructed in an incremental fashion based

on the coherence [9]

c(u,v) :=
|κ(u,v)|

√

κ(u,u)
√

κ(v,v)
∈ [0, 1], ∀u,v ∈ U . (4)

Let J−1 := ∅. The dictionary updating rule is given, for n ∈
{−1, 0, 1, 2, · · · }, by

Jn+1 :=

{

Jn ∪ {n} if maxj∈Jn
c(un,uj) ≤ δ,

Jn otherwise,
(5)

where δ ∈ (0, 1). We assume that the dictionary is a linearly

independent set; this is guaranteed automatically when a Gaus-

sian kernel is employed. The dictionary subspace is defined as

Mn := span{κ(·,uj)}j∈Jn
. (6)

B. Existing Kernel Adaptive Filtering Algorithm

We describe the existing algorithms in the case of Jn =
Jn+1 for simplicity. Let 〈·, ·〉 and ‖·‖ denote the inner product

and the norm in a RKHS H. It is desired to find a function

f that minimizes the distance from the current filter ϕn ∈ H
under the constraint f(un) = 〈f, κ(·,un)〉 = dn, where the

first equality holds due to the reproducing property [15]–[18].

The update equation of the HYPASS algorithm is given as

follows:

ϕn+1 = ϕn + λn(PΠn
(ϕn)− ϕn), (7)

where λn ∈ (0, 2) is the stepsize and

Πn := {g ∈ Mn : g(un) = 〈g, κ(·,un)〉 = dn}. (8)

We will express HYPASS in a parameter space. The hyper-

plane Πn can be expressed in the rn-dimensional Euclidean

space R
rn as [19]

Hn := {h ∈ R
rn : ϕ(un) = κ⊤

nh = dn}, (9)

where κn := [κ(un,uj
(n)
1

), κ(un,uj
(n)
2

), · · · , κ(un,uj
(n)
rn

]⊤

and Gn ∈ R
rn×rn is the Gram matrix whose (p, q) component

is given by κ(u
j
(n)
p
,u

j
(n)
q

).

Note that the functional subspace (Mn, 〈·, ·〉) is an isomor-

phic Hilbert space of the parameter space (Rrn , 〈·, ·〉Gn
). In

(Rrn , 〈·, ·〉Gn
), a normal vector of Hn is given by G−1

n κn

since κ⊤
nh = 〈G−1

n κn,h〉Gn
. Using the Gn-projection

PGn

Hn
(hn) := argminh∈Hn

‖h− hn‖Gn
, HYPASS can be

therefore expressed in (Rrn , 〈·, ·〉Gn
) as follows [19]:

hn+1 = hn + λn(P
Gn

Hn
(hn)− hn)

= hn + λn
en

κ⊤
nG

−1
n κn

G−1
n κn, (10)

where λn ∈ (0, 2) is the stepsize and en := dn−h⊤
nκn is the

instantaneous error.

Now, let 〈·, ·〉Rrn and ‖·‖
Rrn denote the canonical in-

ner product (defined as 〈·, ·〉Rrn := 〈·, ·〉I with the iden-

tity matrix I) and its induced norm, respectively. We fi-

nally introduce the KNLMS algorithm [9], a parameter-space

approach that operates the metric projection PHn
(hn) :=

argminh∈Hn
‖h− hn‖Rrn in (Rrn , 〈·, ·〉Rrn ). The update

equation is given by

hn+1 = hn + λn(PHn
(hn)− hn)

= hn + λn
en

κ⊤
nκn

κn. (11)

In the case of Jn 6= Jn+1, the vector hn ∈ R
rn in (10) and

(11) needs to be replaced by [h⊤
n 0]⊤ ∈ R

rn+1 . This also

applies to the proposed algorithm presented in Section III-B.

III. PROPOSED METRIC AND ALGORITHM

A. Derivation of Proposed Metric

The autocorrelation matrix of the kernelized input vector

κn can be approximated as [14]

R := E(κnκ
⊤
n ) ≈

1

rn
G2

n (12)

subject to the following covariance-matrix condition:

E(κ(·,un)κ(·,un)
T) ≈

1

rn

∑

j∈Jn

κ(·,uj)κ(·,uj)
T. (13)

Intuitively, the condition (13) implies that the dictionary data

can be considered as randomly picked samples from the input-

data distribution. KNLMS can be regarded as the normalized

LMS (NLMS) algorithm for the input-output pair (κn, dn),
and its corresponding MSE function is given by

Jh(h) := E(e2n(h)) = h⊤Rh− 2p⊤h+ E(d2n), (14)

where p := E(dnκn) is the cross-correlation vector between

dn and κn. Fixing the dictionary and letting Gn := G, ∀n ∈
N, HYPASS can be regarded as the NLMS algorithm for

the input-output pair (κ̃n, dn), and its corresponding MSE

function is given by [19], [20]

Jh̃(h̃) := E(e2n(h̃)) = h̃
⊤
R̃h̃− 2p̃⊤h̃+ E(d2n), (15)

where h̃ := G
1
2h, p̃ := E(dnκ̃n) = G− 1

2p, and R̃ :=

E(κ̃nκ̃
⊤
n ) = G− 1

2RG− 1
2 with the modified kernelized input

vector κ̃n := G− 1
2κn. The approximation (12) immediately

implies R̃ ≈ 1
r
G (rn := r, ∀n ∈ N), and hence it follows

that [14]

cond2(R̃) ≈
√

cond2(R), (16)

where cond2(R) := ‖R‖2
∥

∥R−1
∥

∥

2
with the spectral norm

‖·‖2. This implies that R̃ is better conditioned than R, and

that the error contours of HYPASS is better shaped than those

of KNLMS.

We consider the specific metric 〈·, ·〉G2
n

so that its cor-

responding autocorrelation matrix has its condition number

equal to the unity. Recall that HYPASS uses the metric
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〈·, ·〉Gn
. As in the arguments in the previous paragraph, we

fix the dictionary and let Gn := G, ∀n ∈ N. The use of the

metric 〈·, ·〉G2 modifies the MSE function (15) into (see the

proof of Proposition 1 in Section III-B)

J
ĥ
(ĥ) := E(e2n(ĥ)) = ĥ

⊤
R̂ĥ− 2p̂⊤

ĥ+ E(d2n) (17)

of ĥ := Gh, where p̂ := E(dnκ̂n) = G−1p, R̂ :=
E(κ̂nκ̂

⊤
n ) = G−1R̂G−1 with κ̂n := G−1κn. By using the

approximation (12), it can be seen that R̂ ≈ 1
r
I , and hence

cond2(R̂) ≈ 1. (18)

The metric 〈·, ·〉G2
n

is therefore ideal from the viewpoint of

whitening under the condition (13).

We will illustrate the reduction of the eigenvalue spread

yielded by the use of the metrics 〈·, ·〉Gn
and 〈·, ·〉G2

n
. We use

the Gaussian kernel κ(u,v) := exp(−
‖u−v‖2

RL

2σ2 ), u,v ∈ U ,

whose scale parameter is set to σ = 0.03. The dictionary

size is fixed to r = 25, and the data points of the dictionary

are placed uniformly between −0.5 and 0.5. The autocorre-

lation matrices are computed with 2000 samples of the input

data drawn from the uniform distribution within the interval

[−0.5, 0.5]. Fig. 1(a) depicts the contours of the surface of

f(h1, h2) :=
[

h1, h2
]

[

µmax 0
0 µmin

] [

h1
h2

]

, h1, h2 ∈ R,

(19)

where µmax (or µmin) is the maximum (or minimum) eigen-

value of R. Likewise, Figs. 1(b), (c) depict those for R̃ and R̂,

respectively. It can be seen that the distortion of the contours

is alleviated from Fig. 1(a) to Fig. 1(b) and from Fig. 1(b)

to Fig. 1(c). The eigenvalue spreads are cond2(R) ≈ 85.2,

cond2(R̃) ≈ 14.6, and cond2(R̂) ≈ 4.0. Hence, the proposed

metric is expected to yield fast convergence; this will be

demonstrated in Section IV.

B. Proposed Algorithm

We consider the Hilbert space R
rn equipped with the inner

product 〈·, ·〉G2
n

. As in Section II-B, we present the proposed

algorithm in the case of Jn = Jn+1. Using the G2
n-projection

P
G2

n

Hn
(hn) := argminh∈Hn

‖h− hn‖G2
n

, the filter updating

rule in (Rrn , 〈·, ·〉G2
n
) is given as follows:

hn+1 = hn + λn(P
G2

n

Hn
(hn)− hn), (20)

where λn ∈ (0, 2) is the stepsize. Observing that Hn = {h ∈
R

rn : 〈G−2
n κn,h〉G2

n
= dn}, we obtain

P
G2

n

Hn
(hn) = hn − λn

〈G−2
n κn,hn〉G2

n
− dn

∥

∥G−2
n κn

∥

∥

2

G2
n

G−2
n κn. (21)

Substituting (21) into (20) yields

hn+1 = hn + λn
en

κ⊤
nG

−2
n κn

G−2
n κn. (22)

The following proposition can be verified.

(a) R (KNLMS) (b) R̃ (HYPASS)

(c) R̂ (PROPOSED)

Fig. 1. Contours of f(h1, h2) for R, R̃, and R̂.

Proposition 1: Fix the dictionary and let Gn := G and

rn := r, ∀n ∈ N. The error contours for the proposed

algorithm (22) are governed by the autocorrelation matrix

R̂ := G−1RG−1 ≈ 1
r
I of the whitened kernelized input

vector κ̂ := G−1κn.

Proof: Left-multiplying both sides of (22) by Gn and letting

Gn := G yields

ĥn+1 = ĥn + λn
en

κ̂
⊤
n κ̂n

κ̂n. (23)

The proposed algorithm (23) can be regarded as a normalized

version of the following LMS algorithm:

ĥn+1 = ĥn + ηnenκ̂n, (24)

where ηn > 0 and the instantaneous error can be rewrit-

ten as en = dn − 〈ĥn, κ̂n〉Rrn . This implies that the

MSE function is given by (17), and hence the error

contours of MSE for the proposed algorithm are gov-

erned by R̂. Also, from (24), the proposed algorithm

can be regarded as the NLMS algorithm for (κ̂n, dn).
�

C. Coherence-Based Selective Updating Strategy

To reduce the computational complexity, we employ the

coherence-based selective updating strategy [9]. The basic

idea is to select, from the dictionary {κ(·,uj)}j∈Jn
, a small

number of elements that are most coherent to κ(·,uι). The

coherence is defined as (4).

For each ι ∈ In, n ∈ N, define the selected dictionary

index subset J̌n ⊂ Jn of cardinality s ∈ N
∗ such that

c(uι,uj) ≥ c(uι,uk), ∀j ∈ J̌n, ∀k ∈ Jn\J̌n. (25)
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TABLE I
COMPUTATIONAL COMPLEXITY

Computational Complexity

PROPOSED (full) 2r2n + vinv(rn) +O(rn)

PROPOSED (selective) (L+ 5)rn + 1

2
s3 + L+4

2
s2 + vinv(s) +O(s)

HYPASS (L+ 5)rn + L+5

2
s2 + vinv(s) +O(s)

KRLS tracker 2r2n + vinv(rn) +O(rn)

In other words, we select a dictionary subset {κ(·,uj)}j∈J̌

that are maximally coherent to κ(·,uι). For the selected

dictionary indicated by J̌n = {ι
(n)
1 , ι

(n)
2 , · · · , ι

(n)
s }, its

associated Gram matrix is denoted by Ǧn,ι ∈ R
s×s

whose (p, q) component is given by κ(u
ι
(n)
p
,u

ι
(n)
q

) and

the denoted kernelized input vector is given by κ̌n,ι :=
[κ(un,uι

(n)
1

), κ(un,uι
(n)
2

), · · · , κ(un,uι
(n)
s

)]. Using the vec-

tor ȟn,ι := [h
n,ι

(n)
1
, h

n,ι
(n)
2
, · · · , h

n,ι
(n)
s

]⊤ of the selected co-

efficients together with Ǧn,ι and κ̌n,ι, the proposed algorithm

with the selective updating strategy is given by

ȟn+1,ι = ȟn,ι + λn
en

κ̌⊤
n,ιǦ

−2

n,ικ̌n,ι

Ǧ
−2

n,ικ̌n,ι. (26)

D. Computational Complexity

We discuss the computational complexity of the proposed

algorithm. Suppose that the Gaussian kernel is employed. The

computational complexity of a kernel adaptive filter is given

in terms of the dictionary size rn, n ∈ N, and the dimension

L of the input space U . Table I summarizes the overall per-

iteration complexity of the proposed fully updating algorithm,

the proposed selective updating algorithm, HYPASS, and the

kernel recursive least squares (KRLS) tracker algorithm [5].

In the table, vinv(rn) represents the complexity for G−1
n , and

vinv(s) represents the complexity for the inverse of the s ×
s submatrix Ǧn,ι of Gn. The complexity of the proposed

selective updating algorithm and HYPASS using the selective

updating strategy, depends on the number s of the selected

coefficients. The proposed fully updating algorithm requires

the O(r2n) complexity, while the proposed selective updating

algorithm requires the O(rn) complexity, provided that rn ≫
s.

Fig. 2 illustrates the complexity of each algorithm as a

function of the dictionary size for L = 2 and s = 7. Here,

vinv(s) is counted as s3, and vinv(rn) is counted as (rn − 1)2

since we use the matrix inversion lemma [21].

IV. NUMERICAL EXAMPLES

We first show the validity of the approximation (12), and

verify the effect of the whitening of the proposed metric in a

practical scenario when the dictionary grows over time under a

novelty criterion. We then show the advantages of the proposed

metric in its application to online prediction of time-series

data.

A. Experiment A: Eigenvalue Spread

The input data are randomly generated from a uniform

distribution over the interval [−0.5, 0.5]. We use the Gaussian

Dictionary size
0 50 100 150 200

C
o
m

p
le

x
it
y

10
0

10
2

10
4

PROPOSED (full)
KRLS tracker

PROPOSED (selective)

HYPASS

Fig. 2. Computational complexity for L = 2, s = 7.

Iteration
0 200 400 600 800 1000

C
o

n
d

it
io

n
 n

u
m

b
e

r

10
0

10
5

10
10

cond2(R)

cond2 R̃

cond2 R̂

√

cond2(R)

Fig. 3. Eigenvalue spreads of R, R̃, and R̂ (proposed).

kernel whose scale parameter is set to σ = 0.03. The

dictionary is constructed with the coherence criterion [9] with

the threshold δ = 0.9. The eigenvalue spreads, averaged over

300 independent runs, of R, R̃ and R̂ are plotted in Fig. 3.

One can see that the eigenvalue spreads of R̂ are much

smaller than those of R and R̃, and that the approximation

cond2(R̃) ≈
√

cond2(R) is valid to a certain extent. The

slight gap between cond2(R̃) and
√

cond2(R) is due to the

fact that, under the coherence criterion, the dictionary data

distribute non-uniformly in a strict sense.

B. Experiment B: MSE Learning Curves

We consider online prediction of the nonstationary time

series data generated by the following equation (cf. [9]): dn :=
(0.8−0.5 exp(−d2n−2))dn−1−(0.3+0.9 exp(−d2n−1))dn−2+
0.1 sin(dn−1π) for 0 ≤ n ≤ 3000 (d−2 := d−1 :=
0.1) and dn := (0.8 − 0.5 exp(−d2n−1))dn−1 − (0.3 +
0.9 exp(−d2n−1))dn−2+0.1 sin(dn−1π) for n > 3000. In this

experiment, we predict the output dn with the input vector

un := [dn−1, dn−2]
⊤. The noise is white Gaussian with the

signal to noise ratio (SNR) 40 dB. We use the Gaussian

kernel with the scale parameter σ = 0.3. The proposed

algorithm is compared with HYPASS and KRLS tracker [5].

For the proposed selective updating algorithm and HYPASS,

the cardinality of the selected dictionary is set to s = 7.

The dictionaries of the proposed algorithm and HYPASS are

chosen by the coherence criterion with the threshold δ = 0.8.

The bound of the dictionary size of KRLS tracker is set to

M = 50.
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Iteration number
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Fig. 4. Results for Experiment B.

Fig. 4(a) depicts the MSE learning curves of the linear-

complexity methods: the proposed selective updating algo-

rithm and HYPASS. It can be seen that the proposed algo-

rithm exhibits faster convergence and tracking performance

than HYPASS. Fig. 4(b) depicts the results of the quadratic-

complexity methods: the proposed full updating algorithm

and KRLS tracker. The simulation result shows that the

proposed algorithm exhibits the same tracking speed as KRLS

tracker, and achieves the better steady-state performance. The

evolutions of the dictionary sizes are shown in Fig. 4(c).

V. CONCLUSION

This paper proposed the ideal metric from the viewpoint

of whitening, and presented the kernel adaptive filtering algo-

rithm with this metric. We showed that the proposed metric

reduced the eigenvalue spread of the autocorrelation matrix.

Since the error contours of the proposed algorithm are gov-

erned by the autocorrelation matrix of the whitened kernelized

input vectors, the algorithm converges uniformly. Numerical

examples validated the approximation R ≈ 1
r
G2 for the

growing dictionary, and showed that the proposed algorithm

significantly outperformed the existing kernel adaptive filtering

algorithms.
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