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Abstract—Object detection and tracking have always been
crucial and challenging topics in computer vision. Compared
with monocular vision systems, binocular vision systems (BVSs)
have the advantage of dealing with illumination variation, shadow
interference, and severe occlusion. Usually, the BVS constructs
the world coordinates system by manually calibrating the ground
plane. However, the camera vibrations decreases the calibration
precision and weakens the system performance. To automatically
correct and update the parameters of ground plane, we introduce
Linear Discriminant Analysis (LDA) method to analyze the
results of object localization and include the feedback in the
surveillance system, in this way, a close loop system that greatly
improves the accuracy and stability of surveillance system is
constructed. Experimental results demonstrate that our approach
works well in BVS for video surveillance.

Index Terms—Binocular vision, Multi-object tracking, Self-
adaptive ground calibration, Linear Discriminant Analysis

I. INTRODUCTION

Object detection and tracking are the fundamental chal-
lenges in computer vision and pattern recognition. Some state-
of-the-art surveillance systems follow the detection and track-
ing framework, i.e., combining detection models with tracking
algorithms together for video surveillance [1]. Nevertheless,
the majority of existing works are hard to be applied in
real video surveillance scenarios. Typically, three challenges
have been widely recognized: (1) illumination variations; (2)
shadow interference; (3) multiple objects occlusion. However,
BVSs [2], [3] are more appropriate to handle these challenges
than monocular vision systems. For the surveillance systems
with stationary cameras, the world coordinate system can be
built up by the calibrated ground plane, i.e., recovering the
3D world coordinates of objects. Unfortunately, the camera
vibrations will cause the unexpected changes in the calibrated
ground plane, which further weakens the detection and track-
ing performance. In this paper, we aim to adjust the parameters
of ground plane automatically by those objects which have
been localized in the surveillance system.

A. Related works

In many surveillance systems, background subtraction is
widely used to detect moving objects in a stationary scene.
Moreover, some learning-based methods are proposed to local-
ize some specific objects. R. Xiao, et al. use the boosting chain
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method [4] for human face detection. H. Grabner proposes
an AdaBoost feature selection framework to conduct on-line
feature selection [5]. To overcome the drawback of drifting,
they explored the continuum between the fixed tracker and
online learning methods to obtain a classifier [6]. R. Liu et al.
find an upper bound of boosting error in a co-training frame-
work to guide the tracker construction [7]. Besides, regularized
least squares classifier [8] and Structural Risk Minimization
classifier [9] are proposed to get better classifying results. All
above works of monocular vision systems have made great
contributions for object detection and tracking, but they still
cannot perfectly handle issues of objects occlusion, shadow
interference and illumination.

To deal with the above mentioned challenges, the BVSs
[10], [11] are widely used in video surveillance. In general,
BVSs can be classified into two categories, wide and short
baseline, by the distance of adjacent cameras. Currently, a
variety of applications of surveillance scenes choose the wide
baseline system without demands of calibration for the system
parameters [12], [13]. To avoid the disturbance of noise, the
wide baseline systems usually estimate the correspondence
directly based on a sparse set of feature points in different
views. While the short baseline systems usually construct the
depth map by finding the correspondence points in different
camera views [14], [15]. However, the computational process
of the dense depth map is costly and sensitive to noise. L. Cai
et al. [2] proposed a kernel-based algorithm to detect and track
objects in the short baseline system with a greatly decreased
computational cost.

B. Our contribution

In stationary camera scenarios with a flat ground plane, L.
Cai et al. [2] extract some sparse feature points for real-time
object detection and tracking, but the system performance is
closely related to the precision of the ground plane. Once the
camera vibrates, the calibration result is not valid anymore,
consequently the performance of system will be greatly af-
fected.

To improve the accuracy and robustness of binocular
surveillance system, we follow the assumption in [2], i.e, the
surveillance system has the stationary cameras and the flat
ground plane. But unlike the traditional open loop systems, we
construct a closed loop surveillance system by adding a LDA-
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based [16] feedback component to achieve better performance,
as shown in Fig.1. Given the feature points on the objects being
identified in our surveillance system, we can project them onto
the ground plane so that the distance of projected points of
different objects are maximized and the distance of projected
points of the same object is minimized. That is the ground
plane can be regarded as the fisher plane in LDA algorithm.
Therefore, we can utilize LDA algorithm to estimate the
parameters of ground plane and update online to offset the
camera vibrations, i.e., cameras shift or rotate within a small
range, which is greatly beneficial for the robustness of the
system. With the feedback of LDA, the projected points on the

Fig. 1: (a) the open loop system without the feedback com-
ponent. (b) The close loop system with the LDA feedback
component.

ground plane have less overlap and can be easily discriminated,
as shown in Fig.2. The rest of the paper is organized as

Fig. 2: The effects of LDA feedback. (a) The original scene
image. (b) The world coordinate system without the feedback
of LDA. (c) The world coordinate system with the feedback
of LDA.

follows: Section 2 details our binocular coordinate system
and the proposed method for auto-correction of the ground
calibration, and followed by an introduction of the tracking
system based on stationary binocular cameras in Section 3.
Experimental results are shown in Section 4. Finally we
conclude this paper in Section 5.

II. GROUND PLANE CALIBRATION

In the camera view, objects are often occluded by their
neighbours, and hard to be separated clearly. However, there is
no object occlusion in the top view. Therefore, we project the

3D feature points onto the ground plane to obtain the points’
position in the top view.

A. Binocular vision system

Fig. 3: Binocular vision system. (a) The relationship be-
tween the image coordinate system and the camera coordinate
system, (b) The relationship between the camera coordinate
system and the world coordinate system.

The overall binocular vision system is depicted in Fig.3.
In general, the image coordinates are the projected position
of physical object onto the image plane, while the camera
coordinates are localizations of the physical object relative to
the camera. Their relationship is shown in Fig.3 (a), and can
be written as 

Xc = xZc

f = 2dx
xl−xr

Yc = yZc

f = 2dy
xl−xr

Zc = 2df
xl−xr

(1)

where (Xc, Yc, Zc) denotes the camera coordinates, and
(xl, xr) denotes image coordinates. f means the focal length
of camera.

Fig.3 (b) shows the relationship between camera coordinates
and world coordinates, it can be derived as:

(Xw, Yw, Zw)
′

= R(Xc, Yc, Zc)
′
+ T (2)

where R and T represents rotation matrix and displacement
vector. To initialize R and T , we use those feature points on
the ground plane (See Fig.3 (b) red crossing points) to fit the
plane equation uXc + vYc + wZc = 0 by the least square
method.

B. LDA feedback

The calibration error and cameras vibration will result
in incorrect ground plane parameters and poor localization
performance. For instance, Fig.4 shows the world coordinates
of objects while the ground plane parameters contain small
errors so that the feature points of different objects cannot be
separated easily.

Due to the errors of ground plane parameters, the projected
points of different objects on the calibrated ground plane
will be partially overlapped. In fact, the ground plane is
perpendicular to the objects on it, so the projected area of
objects on the true ground plane is smaller than that on any
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Fig. 4: Positions of feature points. (a) 3D position of feature
points and calibrated ground plane. (b) Projected position of
feature points on the calibrated ground plane.

other plane. Besides, the projected points of different objects
on the true ground plane have no overlap, i.e., the scatter
within an object of the same is minimal while among objects
is maximal. Thus, we search the projected plane that separates
the feature points belonging to different objects perfectly.

Assume that C1 = [x11, x
2
1, ..., x

n1
1 ] , C2 = [x12, x

2
2, ..., x

n2
2 ],

...,Cm = [x1m, x
2
m, ..., x

nm
m ], where, Ci stands for i-th objects,

xji means the j-th feature point belonging to the i-th objects.
The targeted plane W = [w1,w2]T maximizes the distance
of projected sets F1 = C1WT ∈ Rn1×2, F2 = C2WT ∈
Rn2×2,..., Fm = CmWT ∈ Rnm×2. In order to determine
this plane, we define the objective function as,

J(W) = (WSbWT)(WSwWT)−1 (3)

where Sw is the within-class scatter matrix and Sb is between-
class scatter matrix.They can be defined as:

Sw =

m∑
i=1

ni
n

ni∑
j=1

(xji − x̄i)(x
j
i − x̄i)

T (4)

Sb =
m∑
i=1

ni

ni∑
j=1

(x̄i − x̄)(x̄i − x̄)T (5)

where n =
∑m
i=1 ni, x̄i = 1/ni

∑ni

j=1(xji ). LDA method is
used to maximize Eq.3, i.e., constructing the two eigenvectors
of S−1

w Sb with the two related biggest eigenvalues of W . To
avoid the non full rank situation of Sw, we diagonalize it
if necessary. The ground plane equation can be corrected by
the fisher plane. Fig.2 (a) shows the corrected ground plane
and the world feature points in the corresponding coordinate
system. Fig.2 (b) shows the projected points on the ground
plane of feature points.

III. OBJECT DETECTION AND TRACKING

Most BVSs aim to construct the dense depth maps, but the
high computational cost makes it hard to be applied in online
video surveillance. Instead of recovering the dense depth map,
we extract some harris [17] feature points to estimate their 3D
position in the camera coordinate system.

With these 3D feature points, we project them onto the
ground plane to generate the 2D projection points so that
those 2D points can be grouped into different clusters to
estimate the location and orientation of the objects. To model
an object in the surveillance scene, we take the height of each
point as weight for clustering. Then an object can be simply
represented by an ellipse from the top view and the long axes
of ellipses approximate its orientation.

A. Object detection

Kernel Density Estimation (KDE) is widely used to estimate
the probability of the center point within a given window. Let
the position and rotation of feature points be x and θ, and the
probability density function can be described as

E(x, θ) =

ni∑
i=1

Hθ(di(θ))

nj∑
j=1

wjHx(dj(x), θi) (6)

where di(θ) and dj(x) are the distances of orientation and
position with normalized coefficients. Hθ and Hx are the
kernel functions of position and orientation respectively, i.e.

HX (x) = 1− x, (0 < x < 1) (7)

Hθ (x) = e−x (8)

A local maximum of function E(x, θ) stands for the prob-
ability of position and rotation of an object. Mean shift
method, proposed by Y. Cheng [18], is used to search for the
local maximums. It is a hill climbing process along with the
opposite direction of gradient in E(x, θ). To search the local
maximums of E(x, θ), we iteratively update the orientation
and position variables by

x̂ = x +mh,G(x) (9)

θ̂ = θ +mh,G(θ) (10)

The convergence point of mean shift iteration is the local
maximums in E(x, θ). Those points that climbs to the same
peak are grouped into a cluster, i.e., to stand for the object.
Fig.5 shows the mean shift iteration process and the cluster
results.

Fig. 5: 3D position of objects. (a) shows the 3D position of
feature points and ground plane, (b) shows the iteration process
and cluster results.
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(a)Ground calibration with deviation and LDA auto-correction (b)Cameras turbulence and LDA auto-correction

Fig. 6: trajectories of objects without LDA method and with LDA method in different scenarios

B. Object tracking
After localizing the objects in the scene, the object in con-

secutive frames need to be associated to generate its trajectory.
Usually, two methods are used to track an object: detecting
the object position in each frame by clustering algorithm and
then associating them across frames; Or estimating the object
position in a new frame by iteratively updating the position
from the previous frame.

In this paper, we choose the second approach, i.e., employ-
ing Kalman filter to estimate objects’ positions in consecutive
frames by iteratively updating the position. The object position
can be estimated by

V
′

t = Vt−1 = x
′

t−1 − x
′

t−2 (11)

where Vt−1 is the velocity of objects at time t − 1, V
′

t is
the predicted velocity of objects at time t, x

′

t−1 and x
′

t−2 are
positions of an object at time t−1 and t−2. We can predict the
position of the object at time t to initialize the hill climbing
position.

The initial position of hill climbing in the current frame
is estimated according to the filter prediction. Then the local
maximum in the current frame is obtained by the mean shift
iteration. At last, the position and orientation of the object
is updated with the new local maximum. In this way, the
trajectory of objects are obtained.

IV. EXPERIMENTS

Both the indoor and outdoor experiments are conducted
to demonstrate the effectiveness of employing LDA in our
binocular vision tracking system. Fig.6 (a) presents the indoor
experiments. The first column displays real scenario images,
and the second column shows the tracking trajectories with
large deviation of ground plane parameters. It can be seen
that the tracking result is not accurate enough. While the third
column shows the good tracking results when LDA is used to
correct the ground plane automatically.

Fig.6 (b) shows the outdoor experiments. The first column
displays the real scenario images and it can be seen that the
field of view has been changed with camera vibrations. The
second column shows the poor tracking performance without
LDA correcting the ground plane equation automatically.
However, the third column shows the robustness of tracking
performance by LDA method.

Table 1 lists the experimental results under different scenes.
Tracking results with LDA are compared to these without LDA
method. It can be seen that LDA method is clearly beneficial
to the robustness of the tracking system, and greatly improves
the tracking performance.
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TABLE I: tracking accuracy

Method Scene 1 Scene 2 Scene 3 Scene 4

Cluster 96.3% 83.6% 79.5% 76.2%

Cluster+LDA 95.8% 88.7% 87.2% 79.3%

V. CONCLUSION

In this paper, we empoly LDA method in binocular vi-
sion tracking system to adjust the ground plane parameters
automatically, and it can greatly improve the accuracy and
robustness of BVS. The experimental results demonstrate the
effectiveness of the proposed method.
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