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Abstract—In this paper a method of encoding the signals by
using Amplitude Adaptive Asynchronous Sigma-Delta modulator
(AA-ASDM) scheme without an additional envelope encoding
of the signal is proposed. According to AA-ASDM, the time-
varying envelope function of the input signal is used in the
feedback loop to reduce the switching rate of the output trigger
and thus the power consumption of the circuit. In previous
work, the signal and its envelope function were encoded and
transmitted separately, thus resulting in inefficiency, since two
signals instead of one were required to be transmitted. In
order to solve this inefficiency, in this paper it is proposed to
select such a time-varying envelope function which does not
require additional encoding and transmission, and still be able to
recover the original signal from the obtained time sequence. The
proposed method is particularly advantageous for signals with
wide dynamic range.

I. INTRODUCTION

As wireless technologies evolve, more and more new energy
constrained sensing applications appear, such as wearables,
portable medical devices, wireless sensor networks and others.
One of the most important issue in such applications is energy
consumption and management of the battery life. In order
to deal with this issue, researchers are trying to find new
and effective solutions to reduce the power consumption of
wireless devices and thus prolong the life of the battery.

One essential part of all wireless sensing devices is an
analog to digital converter (ADC), the energy consumption
of which can be significantly reduced.

As shown in [1], [2], [3], asynchronous designs, instead of
synchronous, in ADCs exhibit better properties such as exclu-
sion of electromagnetic interference, immunity to metastable
behaviour, absence of clock jitter and most importantly lower
energy consumption.

One such asynchronous ADC is Asynchronous sigma-delta
modulator (ASDM), which converts amplitude information
into time sequence in a very energy efficient way. The latest
implementations show that it is possible to create ASDM with
power consumption less than 28nW [4]. The fundamentals of
ASDM are given in [5].

In previous paper [6], an improved version of ASDM, called
Amplitude Adaptive Asynchronous Sigma-Delta modulator
(AA-ASDM) was presented, where by using time-varying
envelope of the input signal in the feedback loop of ASDM,
it was possible to reduce the switching activity of ASDM and

thus the power consumption of the circuit by up to 59.86%.
Regardless of this reduction the perfect recovery of the original
signal from the obtained time sequence was still possible. [6]

However, as concluded in [6], the efficiency of AA-ASDM
could still be improved if there was no necessity to additionally
encode and transmit the time-varying envelope function of the
signal in order to recover it at a receiver.

Further studies have led us to a solution which not only
solves the above-mentioned problem, but also further reduces
the power consumption of the circuit.

Therefore, in this paper an improved version of AA-ASDM
is presented in Section III, which requires the time-varying
envelope function of the input signal as proposed in Section
IV. The method is particularly advantageous for signals with
wide dynamic range, as shown by numerical simulations using
electroencephalogram (EEG) signals in Section V.

II. ASYNCHRONOUS SIGMA-DELTA MODULATOR

The block diagram of classical Asynchronous Sigma-Delta
modulator (ASDM), which consists of integrator and Schmitt
trigger is shown in Fig.1. ASDM circuit is defined by κ, δ
and b parameters, which determine the average switching rate
of the Schmitt trigger and thus the energy consumption of the
circuit. [7]

Fig. 1. ASDM block diagram.

The input signal x(t) is bounded in amplitude as

|x(t)| ≤ c < b (1)

Since output of the Schmitt trigger has either z(t) = −b or
z(t) = b value, the integrator input is either x(t)−b or x(t)+b.
By considering (1), it follows that the integrator output y(t)
is increasing or decreasing function for t ∈ [tk, tk+1], thus
y(tk) = (−1)kδ and∫ tk+1

tk

x(t)dt = (−1)k[2κδ − b(tk+1 − tk)] (2)
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for all k, where k ∈ Z. [7] The signal from the obtained time
sequence can be perfectly reconstructed as described in [7] if

supk∈Z(tk+1 − tk) ≤
π

Ω
, (3)

where Ω is the bandwidth of the signal.
Due to (1) the distances between consecutive trigger switch-

ing points tk and tk+1 are bounded as

τmin =
2κδ

b+ c
≤ tk+1 − tk ≤

2κδ

b− c
= τmax (4)

Assuming that C is a maximum value of |x(t)| and c(t) ≥
|x(t)| is a time-varying envelope of the signal, the maximum
and minimum distances τmax and τmin are time-varying as
well:

τmax1(t) =
2κδ

b− c(t)
=

T

1 + 1/α− c(t)/(αC)
(5)

τmin1(t) =
2κδ

b+ c(t)
=

T

1 + 1/α+ c(t)/(αC)
, (6)

where coefficient α > 0 and parameters b and δ are chosen as
b = (1 + α)C and δ = αCT/(2κ). [6]

As shown in [6], if signals with wide dynamic range are
encoded, both distances τmin1 and τmax1 for small c(t) values
are considerably less than T and thus over-triggering occurs,
which is not necessary for reconstruction of the original
signal. This is due to ASDM circuit parameters are chosen
considering only the maximum value which is never exceeded
by the signal. [6]

Since dynamic power consumption of the trigger is directly
proportional to its switching activity, the energy consumption
of the whole ASDM circuit reduces, if the average switching
rate of the Schmitt trigger decreases. This also leads to a
decreased number of time codes needed to be transmitted. The
number of triggerings can be reduced, if the coefficient α is
increased, however, too high α values lead to small differences
τmax1 − τmin1 and thus more precision is needed to encode
the distances between consecutive trigger times. [6]

III. AMPLITUDE ADAPTIVE ASYNCHRONOUS
SIGMA-DELTA MODULATOR

Since the envelope of the signal changes over time, in [6]
it was proposed to change the constant parameter b according
to the time-varying maximum value c(t) ≥ |x(t)| to ensure

τmax2(t) =
2κδ2

b2(t)− c(t)
= const. = T. (7)

In this case the difference b2(t) − c(t) must be constant and
thus b2(t) can be written as

b2(t) = c(t) + βC, (8)

where β > 0. The second parameter δ2 = βCT/(2κ) follows
from (7) and the minimum distance becomes [6]

τmin2(t) =
2κδ2

b2(t) + c(t)
=

T

1 + 2c(t)/(βC)
. (9)

As shown in [6], in this case τmin2 > τmin1 and τmax2 >
τmax1 for all c(t) and β = α values, which means the

over-triggering reduces and the power consumption as well
in comparison to the classical b = const. case. Also the
differences τmax2 − τmin2 are larger for all c(t) < C values.

The block diagram of the Amplitude Adaptive Asyn-
chronous Sigma-Delta Modulator (AA-ASDM) is shown in
Fig.2. In addition to ASDM circuit (Fig. 1) there is an envelope

Fig. 2. AA-ASDM block diagram.

detector with output c(t) connected in the feedback loop,
therefore now instead of (2) the following equation holds [6]:

tk+1∫
tk

x(t)dt = (−1)k[2κδ−βC(tk+1−tk)−
tk+1∫
tk

c(t)dt], (10)

where κ, δ, β, C are given coefficients.
A method of recovery of the original signal is described in

[6], where the envelope function of the signal is also needed
for reconstruction of x(t), therefore c(t) is encoded by another
ASDM. This is the drawback of AA-ASDM in [6]. In order
to increase the efficiency, it is necessary to find such a time-
varying envelope function which does not require additional
encoding and transmission in order to recover the original
signal.

IV. PROPOSED METHOD

In order to solve the weak point of AA-ASDM, in this paper
it is proposed to choose the time-varying envelope function as
follows.

A. Envelope Function

The time-varying envelope can be chosen as:

c(t) = const.+ x2(t), (11)

where the input signal x(t) is bounded in amplitude: x(t) ∈
[−1, 1]. By choosing const. = 0.25, the inequality c(t) ≥
x(t) holds for all x(t) ∈ [−1, 1], therefore the time-varying
envelope c(t) of the input signal x(t) is selected as:

c(t) = 0.25 + x2(t) ≥ x(t), (12)

which does not require any additional encoding scheme (see
Section IV-B).
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B. Signal Recovery

By inserting (12) into (10), a relationship between the output
sequence {tk}k=1,2,...,K and the input signal x(t) of AA-
ASDM can be obtained:∫ tk+1

tk

x(t) = (−1)k[2κδ − βC(tk+1 − tk)−

−
∫ tk+1

tk

(0.25 + x2(t))dt].

(13)

By denoting

qk = (−1)k[2κδ − (βC + 0.25)(tk+1 − tk)], (14)

the equation (13) becomes:∫ tk+1

tk

x(t) + (−1)k
∫ tk+1

tk

x2(t)dt = qk. (15)

By assuming that the input signal x(t) can be represented as

x(t) =
N−1∑
n=0

dngn(t), (16)

where dn are unknown coefficients and gn(t) are chosen base
functions, the first term of (15) can be written as∫ tk+1

tk

x(t)dt =
N−1∑
n=0

dn

∫ tk+1

tk

gn(t)dt = dT gk, (17)

where d = [d0, d1, · · · , dN−1]T and

gk =


∫ tk+1

tk
g0(t)dt∫ tk+1

tk
g1(t)dt
...∫ tk+1

tk
gN−1(t)dt

 . (18)

The second term of (15) can be written as∫ tk+1

tk

x2(t)dt =

∫ tk+1

tk

(N−1∑
n=0

dngn(t)
)2
dt =

= dT · Ĝk · d,

(19)

where Ĝkmn
=
∫ tk+1

tk
gm(t)gn(t)dt. From (15), (17) and

(19) the final equation corresponding to the time interval
t ∈ [tk, tk+1] follows:

dT · gk + (−1)kdT · Ĝk · d = qk. (20)

As there are total K − 1 time intervals, then K − 1 equations
are obtained, and the unknown coefficients d are found by
minimizing the error value:

K−1∑
k=1

(
dT · gk + (−1)kdT · Ĝk · d− qk

)2
. (21)

The question is what base functions gn(t) to choose for
representing the input signal x(t), the bandwidth of which
is limited to ω ∈ [−Ω,Ω]. The classical answer would be
to select gn(t) = sinc(Ω(t − tn)), however, two problems
exist: 1) these functions are well suited for representing only

time-unlimited signals; 2) calculation of gk and Ĝk is both
time consuming and not perfectly precise since no analytical
solutions of the integrals exist. Therefere, given the output
sequence {tk}k=1,2,...,K with the corresponding time period
Θ = tK − t1, the input signal for t ∈ [t1, tK ] is expressed in
Fourier series as

x(t) = d0 +
M∑
m=1

(
dm cos(m

2π

Θ
t) + dm+M sin(m

2π

Θ
t)
)
,

(22)
where the upper limit M follows from the bandwidth Ω of
the signal:

M =
⌊ΩΘ
2π

⌋
. (23)

Such a representation of x(t) is both well suited for expressing
time-limited signals of length Θ and allows fast and precise
calculation of gk and Ĝk.

C. Real-Time Signal Recovery

In order to reconstruct the signal in real-time, the recon-
struction must be carried out in short time intervals t ∈
[tγJ , tγJ+L], where γ = 0, 1, 2, . . . designates the order num-
ber of the interval, but J determines the number of switchings
atfer which the reconstruction of the next interval can start
[8].

Since the precision of the reconstructed signal fragment
at the beginning and at the end of the fragment is low, the
reconstructed signal x̂γ(t) is multiplied by a corresponding
window function [8] :

wγ(t) =


0, if t /∈ (τγ , σγ+1],

θγ(t), if t ∈ (τγ , σγ ],

1, if t /∈ (σγ , τγ+1],

1− θγ+1(t), if t ∈ (τγ+1, σγ+1],

(24)

where τγ = tγJ+I , σγ = tγJ+I+Λ and

θγ(t) = sin2
π(t− τγ)
2(σγ − τγ)

(25)

After the multiplication, the signal fragment is different from
zero only in the middle part of the interval, therefore the next
interval is chosen after receiving J = L − 2I − Λ switching
time instants, thus ensuring overlapping of the intervals. By
combining all intervals, it is possible to obtain the whole
reconstructed signal

x̂(t) =
∑
γ∈Z

x̂γ(t)wγ(t), (26)

which can futher be low pass filtered in order to reconstruct
the initial signal frequency bandwidth before it was multiplied
by the window function.

V. SIMULATION RESULTS

The dynamic power consumption of the trigger is directly
proportional to the switching activity [9]. It means that the
energy consumption of the whole ASDM circuit reduces, if
the average switching rate of the Schmitt trigger decreases.
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This leads also to a decreased number of time codes needed
to be transmitted.
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Fig. 3. Original signal x(t) (gray solid line); error signal x(t)− x̂(t) (black
solid line) after reconstruction; positive and negative envelopes c(t) and −c(t)
(dotted lines) of x(t).

The non-adaptive ASDM and adaptive AA-ASDM were
tested on up to 49 Hz bandlimited EEG signals. One ex-
ample of such a test signal x(t) and its envelope function
c(t) = 0.25 + x2(t) is shown in Fig.3.

The average amounts of triggering events per second for
different α = β values are shown in Table 1. In both cases
the obtained maximum distance between consecutive trigger
times was close and did not exceed the Nyquist step π/Ω. The
energy saving in case of AA-ASDM in comparison to ASDM
was calculated as

E = (1− NAA-ASDM

NASDM
)· 100%. (27)

Table 1 : Comparison of ASDM and AA-ASDM
α = β NASDM NAA-ASDM Energy saving, %

0.1 990 283 71.4
0.3 404 171 57.7
0.7 231 134 42.0
1 192 124 35.4

1.3 171 119 30.4
1.9 148 113 23.7
2.5 136 109 19.9

As it follows from the table, AA-ASDM is more energy
efficient than ASDM at low α = β values, however, too low
α and β are not recommended since high switching rates are
obtained. The optimal choice could be α = β = 1, when the
minimum distance between consecutive trigger times in both
cases is T/3.

After obtaining the output sequence {tk}k=1,2,...,K of AA-
ASDM, the original signal x(t) is reconstructed from the given
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Fig. 4. Consecutive signal reconstruction: the upper three figures correspond
to three consecutive signal fragments (dashed line – original signal, solid
line – reconstructed signal), the lower figure corresponds to the reconstructed
signal by combining all three upper fragments.

time codes as descibed in Section IV. For real-time recovery,
the number L of consecutive triggerings per signal fragment
was chosen to be L = 50, while the parameters I and Λ of
the window function were chosen to be I = 6 and Λ = 10.
In this case, after receiving every new J = L− 2I − Λ = 28
switching time instants in at least JT/3 = 0.095 seconds,
every new signal fragment was reconstructed. It was accom-
plished in less than 0.09 seconds confirming that real-time
signal recovery is possible. The reconstructed three fragments
and their combined signal are shown in Fig.4, while the error
signal x(t)−x̂(t), which is the difference between the original
signal x(t) and the recontructed combined signal x̂(t), of more
longer duration is shown in Fig.3 by the black solid line.

VI. CONCLUSIONS

In this paper it is shown that it is possible to considerably
reduce the switching activity of ASDM, if the classical circuit
of ASDM is supplemented with the time-varying envelope
function of the input signal in the feedback loop of the
circuit. Since the maximum distance between consecutive
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trigger times does not exceed the Nyquist step, it is still
possible to reconstruct the signal from the obtained reduced
time sequence.

For different α = β values, it is possible to achieve up to
71% energy saving compared to non-adaptive ASDM. As the
α = β values grow, the advantage (in switching activity) of
amplitude adaptive ASDM over non-adaptive ASDM becomes
less, however, it is not recommended to choose too high these
values since the variance of distances between consecutive
trigger times reduces and more precision (more bits) is needed
to measure the distances. Too low α = β values are not
recommended as well since high switching activity appears
in both cases.
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[7] Aurel A Lazar, László T Tóth, et al., “Time encoding and perfect recovery
of bandlimited signals.,” in ICASSP (6), 2003, pp. 709–712.

[8] Aurel A Lazar, Erno K Simonyi, and László T Tóth, “A real-time
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