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ABSTRACT

We present a novel algorithm for rapid and efficient estima-
tion of the fundamental frequency, phase and amplitude of
harmonically distorted signals in balanced three-phase (3PH)
power systems. The proposed algorithm exploits the harmon-
ic structure of the signal to enhance the quality of the parame-
ter estimates. It operates in the frequency domain, employing
an efficient iterative interpolation procedure on the Fourier co-
efficients. The estimator has a low computational complexity,
being of the same order as the fast Fourier transform (FFT)
algorithm. Yet, it outperforms state-of-art high resolution pa-
rameter estimators for 3PH power system signals, especially
when the available data points are limited and/or the signal to
noise ratio is poor.

Index Terms— Fundamental frequency estimation, smart
grid, Fourier interpolation, three-phase power system.

1. INTRODUCTION

The estimation of the parameters of the voltage in a three-
phase (3PH) power system is of significant importance in or-
der to ensure the balance between energy generation and con-
sumption, as it allows the system to deploy the power flows
between the main grid and micro-girds and hence optimize
the power delivery [1]. However, this task can be complicated
by variations in the fundamental frequency and harmonic dis-
tortion [2] arising from factors such as the distributed nature
of power sources, duality between loads and supplies, and
frequent demand-supply mismatch [3]. As a result, research
to develop robust estimation algorithms, especially those that
can accurately track the change of frequency and are capable
of tackling harmonic distortion, is urgent and necessary.

State-of-the-art frequency tracking methods for 3PH sig-
nal include the Augmented Complex Least Mean Square (A-
CLMS) method, the Kalman filter (KF) method [4], and the
zero-crossing method [5]. They can achieve reliable track-
ing of the frequency with reasonable accuracy when the 3PH
signal model simply contains only the fundamental frequency
component. Therefore, they exhibit undesirable performance
for harmonically distorted signals.

High resolution parameter estimators for exponential sig-
nals, such as MUltiple SIgnal Classification (MUSIC) [6] and
Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [7], are popular methods for paramet-
ric estimation of 3PH signals that are capable of producing
unbiased estimates for harmonic distorted signals. Clarke’s
α, β transformation is first used to convert the 3PH voltage to
a complex multi-tone signal before applying these algorithm-
s. In the case of harmonically distorted signals, the Weighted
Least Squares (WLS) approach exploits the harmonic struc-
ture to obtain further improvement in the estimation accuracy,
[8] [2]. However, these methods approach the Cramer-Rao
Lower Bound (CRLB) only when all the harmonics have rel-
atively high signal to noise ratio (SNR) and are plagued by a
high computational cost which is of order N3 where N is the
number of time samples.

In this paper, we present a novel efficient and accurate pa-
rameter estimator for harmonically distorted 3PH signals in
balanced power system which overcomes the limitations of
the previously proposed methods. The new algorithm em-
ploys the Clarke transform followed by interpolation on the
Fourier coefficients of the signal combined with an iterative
leakage subtraction step. It exploits the harmonic structure of
the signal to yield an excellent estimation performance.

The rest of the paper is organised as follows. We first
present the harmonic signal model in Section 2. The new al-
gorithm is then described in Section 3. Simulation results are
shown in Section 4 followed by conclusions in Section 5.

2. THE SIGNAL MODEL

The voltage in a balanced 3PH power system follows the
model

va(n) =

K∑
k=1

Vk cos
[
k
(
2π

f0
fs

n + φ

)]
+ wa(n),

vb(n) =

K∑
k=1

Vk cos
[
k
(
2π

f0
fs

n + φ −
2π
3

)]
+ wb(n),

vc(n) =
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k=1

Vk cos
[
k
(
2π
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fs

n + φ +
2π
3

)]
+ wc(n), (1)
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where n = 0, 1 . . .N − 1 is the sampling time index and fs is
the sampling frequency. K is the number of harnomic compo-
nents present in the signal and is assumed given. Vk > 0, k =

1, . . . ,K is the amplitude of the kth harmonic component. f0 is
the fundamental frequency and φ ∈ [0, 2π) is the phase. The
noise terms of the three phases {wa(n),wb(n),wc(n)} are mu-
tually independent and assumed to be real Gaussian with zero
mean and variance σ2.

The 3PH signal model in Eq. (1) can be mapped to the
α, β, 0 reference frame using an orthogonal transformation
matrix known as Clarke’s transform: v0(n)

vα(n)
vβ(n)
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vb(n)
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 . (2)

Then the direct-axis component vα(n) and quadrature-axis
component vβ(n) can be combined into the following com-
plex harmonic exponential signal [2],

x(n) = vα(n) + jvβ(n)

=

K∑
k=1

Ake jlk(2π f n+φ) + w(n), n = 0, . . . ,N − 1, (3)

where lk = [(−1)k−1(6k−3)+1]/4 and Ak = V|lk |. Clearly, l1 =

1. Without loss of generality, we set f = f0/ fs ∈ [−0.5, 0.5] as
the normalised frequency. The noise terms w(n) are complex
Gaussian with zero mean and variance 4σ2/3 [2]. For practi-
cal 3PH signals, we usually have Ak > Ak+1, k = 1, . . . ,K − 1
[9], and we define the SNR of the signal as ρ = 3A2

1/4σ
2.

As a result, given observations va(n), vb(n), vc(n), the orig-
inal parameter estimation problem in a 3PH power system is
converted into the parameter estimation problem of the single-
phase complex harmonic exponentials in noise. The novel es-
timation algorithm presented in the following section aims to
estimate f0, φ and A1 of the transformed exponential signal.

3. THE PROPOSED METHOD

In the rest of this paper, we use λ̂ to denote the estimate of the
parameter λ. Given estimates of the frequencies in Eq. (3),
least squares estimates of the amplitudes and phases of the
3PH signal in Eq. (3) can be obtained [10]. Consequently, the
proposed method aims to obtain highly accurate and robust
estimates of the frequencies. The frequency estimator at the
heart of our approach consists of two steps, an initial coarse
estimator followed by a fine estimation step. The coarse es-
timate of the fundamental frequency is obtained by a peak
search of the periodogram of the signal [11],

f̂initial =
m̂0

N
, where m̂0 = arg max

m
|X(m)|2, (4)

and X(m) is the N-point FFT of x(n).

Assuming that only the fundamental component x1(n) =

A1e jφe j2π f n is present in the signal, then its frequency estimate
obtained from the coarse step can be further refined using any
efficient single-tone estimator such as Quinn’s algorithm [12]
or the A&M estimator [13, 14]. These interpolate on a small
number of Fourier coefficients either side of the maximum bin
m̂0. Let Xp denote the noiseless Fourier coefficients of x1(n)
at frequencies (m̂0 ± p)/N where |p| ≤ 1. Then we have

Xp =

N−1∑
n=0

A1e jφe j2π f ne− j2π( f̂ +
p
N )n

= A1e jφ 1 − e j2π(δ−p)

1 − e j 2π
N (δ−p)

, (5)

where δ = N( f− f̂initial) ∈ [−0.5, 0.5] is the frequency residual.
Defining z = e j2πδ/N = e j2π( f− f̂initial), the estimate of f can

be refined by

f̂ =
={ln(ẑ)}

2π
+ f̂initial, (6)

where ={•} is the imaginary part of •. In Quinn’s method, z
is estimated by

ẑ =
1 − v

1 − ve− j2π p
N
, (7)

where
v =

X0

Xp
, p = sgn(|X1| − |X−1|), (8)

and sgn(•) signifies the sign of •. In the A&M algorithm, on
the other hand, ẑ is given by

ẑ =

[
cos

(
π

N

)
− j

X0.5 + X−0.5

X0.5 − X−0.5
sin

(
π

N

)]−1

. (9)

For a complex signal with harmonic distortion as Eq. (3),
however, the actual noiseless Fourier interpolated coefficients
are the sum of Xp and the spectral leakage terms introduced by
the K−1 harmonic components, which we denote as {Xp,k}

K
k=2.

It is then necessary to subtract this leakage before refining the
normalized frequency f by exploiting the harmonic structure.

Using X̃p to denote the actual interpolated Fourier coeffi-
cients of the harmonic signal, we have

X̃p =

N−1∑
n=0

x(n)e− j2πn( f̂ +
p
N )

= A1e jφ 1 + e j2πN( f− f̂ )

1 − e j2π( f− f̂ )e− j2π p
N

+

K∑
k=2

Ake jlkφ 1 + e j2πN(lk f− f̂ )

1 − e j2π(lk f− f̂ )e− j2π p
N

+ Wp

= Xp +

K∑
k=2

Xp,k + Wp, (10)

where W± are the Fourier coefficients of the noise at the in-
terpolation locations. Due to the relationship between the
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Table 1. The proposed algorithm

Given A length-N complex harmonic signal x(n);

Calculate X(m) = FFT{x(n)}, m = 0, 1, . . . ,N − 1;

Find m̂0 = arg max
m
|X(m)|2;

Initialise f̂ =
m̂0
N , {Âk}

K
k=1 = φ̂ = 0 ;

Do For q = 1 to Q, loop:

(1) X̃± =
∑N−1

n=0 x(n)e− j2πn( f̂± 0.5
N ) ;

(2) X̂±,k = Âke jlk φ̂ 1+e j2πN f̂ (lk−1)

1−e j2π f̂ (lk−1)e∓ j πN
;

(3) X̂± = X̃± −
∑K

k=2 X̂±,k ;

(4) ẑ =
[
cos

(
π
N

)
− j X̂++X̂−

X̂+−X̂−
sin

(
π
N

)]−1
;

(5) f̂ =
={ln(ẑ)}

2π + f̂ ;

(6) â = [ZH( f̂ )Z( f̂ )]−1ZH( f̂ )x ;

Finally f̂0 = f̂ fs, Â1 = |â(1)| and φ̂ = ∠â(1).

harmonic frequencies, the leakage terms Xp,k and hence X̃p

are functions of f . Therefore, assuming that the estimates of
{Ak}

K
k=2 and φ are available, the reconstructed leakage terms

{Xp,k}
K
k=2 become

X̂p,k = Âke jlk φ̂ 1 + e j2πN(lk−1) f̂

1 − e j2π(lk−1) f̂ e− j2π p
N
, k = 2, . . . ,K, (11)

and the leakage-free Fourier Coefficients are recovered as

X̂p = X̃p −

K∑
k=2

X̂p,k. (12)

We can now use these leakage-free coefficients to inter-
polate for the fundamental frequency. Given the frequency
estimate, the amplitudes and phases of the fundamental and
harmonics are obtained as follows. Writing the signal in vec-
tor notation, we have that

x = Z( f̂ )a + w, (13)

where x = [x(0), . . . , x(N − 1)]T , w = [w(0), . . . ,w(N − 1)]T ,
a = [A1e jφ, . . . , AKe jlKφ]T , Z( f̂ ) = [z1, . . . , zK], and zk =

[1, e j2πlk f̂ , . . . , e j2π(N−1)lk f̂ ]T . Solving the LS problem yields
the complex amplitude vector a,

â = arg min
a
||x − Z( f̂ )a|| = [ZH( f̂ )Z( f̂ )]−1ZH( f̂ )x. (14)

Equivalently, each entry in â can also be calculated using DFT
[10], which costs O(N). The estimated values of amplitude
and phase vectors are given by |a| and ∠a respectively.

Table 1 summarises the proposed algorithm. The fine es-
timation step for the frequency and LS amplitude estimator
are implemented for Q(Q ≥ 2) iterations. We refer to the new
method the Harmonic A&M (HAM) algorithm and the reason

that the A&M algorithm is considered here is that it works in
an iterative fashion and converges to the minimum variance at
δ = 0 [13]. Quinn’s algorithm, on the other hand, is not used
as it cannot be implemented iteratively due to the fact that its
estimation variance is maximum at δ = 0 [12]. It is also worth
noting that HAM can also handle the estimation of singe-
phase complex harmonic exponentials. From the procedure
we can see that the overall computational cost is O(N log2 N)
and unlike the state-of-art high resolution estimators such as
MUSIC and ESPRIT, no singular value decomposition (SVD)
or eigenvalue decomposition (EVD) is required.

4. SIMULATION RESULTS

Simulation results are presented in this section to verify the
performance of the proposed estimator. We consider a 3PH
signal based on the Australian standard AS/NZS 61000.2.2
[9]. Specifically, the fundamental frequency f0 is 50Hz and
the phase φ is 10◦. After performing the Clarke’s transform
Eq. (2), the signal comprises the six harmonic components
shown in Table 2. The sampling frequency fs is chosen as
4, 000Hz, which means that there are 80 samples in a single
cycle. We compare the performance of the HAM algorithm
with ESPRIT [7], ESPRIT-WLS [8] and the Multi-tone A&M
(MAM) algorithm [10]. We also include the CRLB [2] for
reference. To generate each graph, 5,000 Monte Carlo runs
were used.

Figs. 1 to 3 show the root mean square error (RMSE) of
f̂0, φ̂ and Â1 versus SNR obtained by various methods when
N = 64. To implement ESPRIT and ESPRIT-WLS, we set
the degree of freedom L = dN/3e where d•e is the ceiling op-
eration. As neither HAM and MAM shows any improvement
for Q > 4, we run HAM for Q = 2 and 4 iterations, and
MAM for Q = 4 iterations only. Observe that when Q = 4,
the RMSE of HAM is just slightly above the CRLB at SNR
> 0dB. The other methods, on the other hand, exhibit high
SNR thresholds below which the estimates are not reliable.
This is because the performance of MAM and ESPRIT meth-
ods is dependent on the SNR of all harmonic components,
while HAM performs estimation by only utilising the Fouri-
er coefficients close to the fundamental frequency. Therefore,
for 3PH signals where the SNR of the harmonic components
are small compared to that of the fundamental component,
HAM is the most robust method.

In practical application, a good tracking performance of
the algorithm is always expected. This requires the parameter
estimator to be capable of achieving accurate estimation when
the data record is short. In Figs. 4 to 6, we compare the per-
formance of the methods when the available data points are
within one cycle. In this test, the SNR is fixed to 60dB. HAM
is implemented using Q = 4 and 6. We find that HAM outper-
forms other methods as the number of iterations increases and
Q = 6 brings the RMSE of HAM down to the CRLB when
only 0.3 cycles, i.e. 24 samples, are available.
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Table 2. The orders of harmonic components and the corre-
sponding amplitudes of the simulated power signal

.
Order 1 5 7 11 13 17

Amplitude 1 0.06 0.05 0.032 0.03 0.018

For further demonstration of HAM’s performance, we ap-
ply the algorithm to the following harmonic signal with a
varying number of harmonic components K,

x(n) =

K∑
k=1

e j2πk f n

2(k−1) + w(n), n = 0, . . . , 63. (15)

To generate the signal, f is chosen randomly in [3/N, 4/N]
and SNR is set to 10dB. The RMSE of f̂ is shown in Fig. 7
where we vary K from 2 to 10. The estimation results of phase
and amplitudes are similar as f̂ and therefore not shown here.
We see that when the harmonic order K is small such that
all harmonics have high SNR, WLS can perform better than
HAM. However, as the number of harmonic components in-
creases, HAM starts to outperform the other methods. The
reason is that as the number of harmonics in the signal in-
creases, their SNR decreases and the frequency estimation of
ESPRIT and MAM becomes less reliable. When the estima-
tion of the harmonics is inaccurate, WLS does not lead to any
performance improvement as the estimation error of all com-
ponents will be accumulated. The performance of HAM, on
the other hand, is not affected as it is independent of the esti-
mation accuracy of the harmonic components.
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Fig. 1. RMSE of f̂0 versus SNR when N = 64.

5. CONCLUSION

We proposed to estimate the fundamental frequency, phase
and amplitude of harmonic distorted signals in 3PH pow-
er systems. The application of Clarke’s transform converts
the 3PH signal to a complex harmonic exponential signal in
noise. The idea of this novel algorithm is to iteratively perfor-
m interpolation on Fourier coefficients while eliminating the
spectral leakage introduced by the embedded harmonic struc-
ture. We demonstrated through simulations that the proposed
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Fig. 2. RMSE of φ̂ versus SNR when N = 64.
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Fig. 3. RMSE of Â1 versus SNR when N = 64.

estimator can obtain RMSE values that are close to CRLB
under limited sampling data and low SNR conditions.

6. REFERENCES

[1] M.H. Bollen and I. Gu, Signal processing of power qual-
ity disturbances, vol. 30, John Wiley and Sons, 2006.

[2] Z. Chen, Z. Sahinoglu, and H. Li, “Fast frequency
and phase estimation in three phase power systems,”
2013 IEEE Power and Energy Society General Meeting
(PES), pp. 1–5, 2013.

[3] Y. Xia, S.C. Douglas, and D.P. Mandic, “Widely lin-
ear adaptive frequency estimation in three-phase pow-
er systems under unbalanced voltage sag conditions,”
The 2011 International Joint Conference on Neural Net-
works (IJCNN), pp. 1700–1705, 2011.

[4] D.H. Dini and D.P. Mandic, “Widely linear modeling for
frequency estimation in unbalanced three-phase power
systems,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 2, pp. 353–363, 2013.

[5] O. Vainio and S. J. Ovaska, “Digital filtering for robust
50/60 Hz zero-crossing detectors,” IEEE Transactions
on Instrumentation and Measurement, vol. 45, no. 2, pp.
426–430, 1996.

2016 24th European Signal Processing Conference (EUSIPCO)

411



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

Number of Cycles

R
M

S
E

(d
B

)

 

 

CRLB
ESPRIT
ESPRIT−WLS
MAM, Q=6
HAM, Q=4
HAM, Q=6

Fig. 4. RMSE of f̂0 versus the number of cycles when SNR
= 60dB.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

20

Number of Cycles

R
M

S
E

(d
B

)

 

 

CRLB
ESPRIT
ESPRIT−WLS
MAM, Q=6
HAM, Q=4
HAM, Q=6

Fig. 5. RMSE of φ̂ versus the number of cycles when SNR
= 60dB.

[6] R.O. Schmidt, “Multiple emitter location and signal pa-
rameter estimation,” IEEE Transactions on Antennas
and Propagation, vol. 34, no. 3, pp. 276–280, 1986.

[7] R. Roy and T. Kailath, “ESPRIT-estimation of signal
parameters via rotational invariance techniques,” IEEE
Transactions on Acoustics, Speech and Signal Process-
ing, vol. 37, no. 7, pp. 984–995, 1989.

[8] H. Li, P. Stoica, and J. Li, “Computationally efficient
parameter estimation for harmonic sinusoidal signals,”
Signal Processing, vol. 80, no. 9, pp. 1937–1944, 2000.

[9] Electromagnetic Compatibility, “Part 2-2:
Environment–compatibility levels for low-frequency
conducted disturbances and signalling in public low-
voltage power supply systems,” Tech. Rep., IEC
61000-2-2 Ed. 2.0 b, 2002.

[10] S. Ye and E. Aboutanios, “An algorithm for the param-
eter estimation of multiple superimposed exponentials
in noise,” 2015 IEEE International Conference on A-
coustics, Speech and Signal Processing (ICASSP), pp.
3457–3461, 2015.

[11] D.C. Rife and R.R. Boorstyn, “Single tone parameter es-
timation from discrete-time observations,” IEEE Trans-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

Number of Cycles

R
M

S
E

(d
B

)

 

 

CRLB
ESPRIT
ESPRIT−WLS
MAM, Q=6
HAM, Q=4
HAM, Q=6
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