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Abstract—The analysis of multicomponent signals, made of a
small number of amplitude modulated - frequency modulated
components that are overlapped in time and frequency, has
gained considerable attention in the past years. These signals
are often analyzed via Continuous Wavelet Transform (CWT)
looking for ridges the components generate on it. In this
approach one ridge is equivalent for one mode. The Empirical
Mode Decomposition (EMD) is a data-driven method which can
separate a signal into components ideally made of several ridges.
Unfortunately EMD is defined as an algorithm output, with no
analytical definition. It is our purpose to merge the data-driven
nature of EMD with the CWT, performing an adaptive signal
decomposition in a time-scale framework. We give here a new
mode definition, and develop a new mode extraction algorithm.
Two artificial signals are analyzed, and results are compared with
those of synchrosqueezing ridge-based decomposition, showing
advantages for our proposal.

I. INTRODUCTION

The analysis of signals made of the superposition of a

small number of components modulated both in amplitude

and frequency (AM-FM) has received considerable attention

in the past decades. This attention particularly increased in the

past few years, not only because of a theoretical interest but

also because of the versatility of these multicomponent signals
to model phenomena such as audio signals [1], biomedical

signals [2], or economic temporal series [3].

The separation problem becomes non-trivial when the

modes are overlapped both in time and frequency in such way

that no simple linear filtering is able to recover them. If they

occupy however disjoint domains in a time-frequency or time-

scale plane, they can be isolated by applying either a Short-

Time Fourier Transform (STFT) or a Continuous Wavelet

Transform (CWT) and look for the ridges the modes generate

on such representations [4], [5], [6]. From this perspective it

results in one mode for every ridge.

On the other hand, the Empirical Mode Decomposition

(EMD) [7] is a data-driven method which works directly on

the observation domain. It considers oscillations at a local

level, decomposing a signal into a small number of so-called

intrinsic mode functions (IMFs), which are basically signals

symmetrically oscillating around zero that can be modulated in

amplitude and frequency. In some cases, the EMD decompo-

sition matches better to physics and/or perception when two

close tones are considered as a whole, as in the beat effect

[8]. Therefore, EMD does not rely on the idea of one mode

for every ridge. For this technique, the components can be

something more complex than circular functions, thus gaining

more versatility.

Nevertheless, EMD is defined as an algorithm output, with

no analytical definition. Because of that, and in order to

provide it with a more solid mathematical framework, it is the

main purpose of this paper to merge the data-driven nature of

EMD with the solid mathematical grounds of the time-scale

representations. The paper is organized as follows. We give a

brief introduction to EMD and the problem of the local mean

in Sec. II. The CWT and synchrosqueezing are discussed in

Sec. III. Our proposal is described in Sec. IV, while numerical

experiments and its results are presented in Sec. V. Sec. VI

concludes the present work.

II. EMPIRICAL MODE DECOMPOSITION AND

THE LOCAL MEAN PROBLEM

Empirical Mode Decomposition (EMD) is an adaptive (data-

driven) method to analyze non-stationary signals stemming

from nonlinear systems. It produces a local and fully data-

driven separation of a signal in fast and slow oscillations.

Working in a deflationary scheme, in the first step the analyzed

signal x(t) is decomposed into

x(t) = d1(t) + a1(t), (1)

with d1(t) being an IMF, the part of the signal that locally
oscillates faster, and a1(t) begin the first local mean. The

method continues decomposing the local mean as a1(t) =
d2(t) + a2(t), and so on. At the end, the original signal can

be expressed as a sum of IMFs (dk(t), k = 1 . . .K) plus a

final trend (aK(t))

x(t) =

K∑
k=1

dk(t) + aK(t). (2)

The EMD algorithm can be summarized as follows [7], [9]:

1) identify the local extrema of x(t)
2) interpolate between minima (resp. maxima) to obtain the

lower (resp. upper) envelope emin(t) (resp. emax(t))
3) compute the local mean a(t) = (emin(t)+emax(t))/2
4) extract the detail d(t) = x(t)− a(t)
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5) iterate on the residue a(t)

The whole thing reduces to the separation of a signal into

mode plus local mean, as in Eq. (1) (or as in step 4), and then

repeat the same procedure on the local mean (step 5). Given

the difficulties of a definition for a local mean, the creators of

EMD defined it as the mean of the upper and lower envelopes

found through spline interpolations of the corresponding local

extrema. This geometric definition, although useful in practice,

lacks of preciseness thus making difficult the analytical study

of EMD. An analytical proposal can be found in [10], where

the local mean a(t) of a signal x(t) is given by

a(t) =
1

α(t)

∫
x(u)w

(
t− u

α(t)

)
du, (3)

where w(u) is a unitary mass weighting function concentrated

around zero and α(t) is the local scale. The author of [10]

considered that the choice of w(u) is not necessarily difficult

but the choice of the local scale α(t) is a delicate problem. One

must notice however the similarity of Eq. (3) with a scaling
function analysis evaluated at the local scale:

Lϕ
x (t, s) =

1

s

∫
x(u)ϕ

(
t− u

s

)
du, (4)

where the scaling function ϕ(u) plays the role of weighting

function. Then,

a(t) = Lϕ
x (t, α(t)). (5)

III. CONTINUOUS WAVELET TRANSFORM AND

SYNCHROSQUEEZING

Let us introduce the continuous wavelet transform

Wψ
x (t, s) =

1

s

∫
x(u)ψ∗

(
t− u

s

)
du, s > 0, (6)

where ψ(u) is an analytic wavelet and z∗ stands for the

complex conjugate of z. The vertical reconstruction formula

reads

x(t) =
2

C̃ψ

Re

(∫ ∞

0

Wψ
x (t, s)

ds

s

)
(7)

with C̃ψ =
∫
ψ̂∗(f)dff , where ψ̂(f) =

∫
ψ(u)e−2πifudu is

the Fourier transform of ψ(u).
The synchrosqueezing [11], [6], a special case of reassign-

ment [12], aims at sharpen the representation, improving its

readability, while remaining invertible. Here, instead of the

more popular scale to frequency mapping, we apply a scale to

scale mapping by using

ŝ(t, s) =
2πiWψ

x (t, s)

∂tW
ψ
x (t, s)

, (8)

defined only for points in B = {(t, s)/∂tWψ
x (t, s) �= 0}. Then,

the synchrosqueezed CWT reads

Tx(t, s) =

∫
B

Wψ
x (t, v)δ(s− ŝ(t, s))

dv

v
, (9)

while the reconstruction formula becomes

x(t) =
2

C̃ψ

Re

(∫ ∞

0

Tx(t, s)ds

)
. (10)

For practical implementations we follow [5]. A binning of

the scale is defined {sk}∞k=0 and then the intervals Sk =
[ sk+sk−1

2 , sk+sk+1

2 ]. The synchrosqueezing is approximated by

T̂x(t, sk) =
∫
s:|ŝ(t,s)|∈Sk

Wψ
x (t, v)dvv and the reconstruction is

x(t) = 2
˜Cψ

Re
(∑

k T̂x(t, sk)
)

.

The synchrosqueezing framework defines a special class of

components and how they are mixed [6].

Definition 3.1: Intrinsic Mode Type Functions (IMT)1. A

continuous signal x(t) ∈ R, x ∈ L∞(R) is an IMT with

accuracy ε > 0 if x(t) = A(t) cos(2πφ(t)), with A and φ
having the following properties: A ∈ C1(R) ∩ L∞(R), φ ∈
C2(R), inft φ

′(t) > 0, supt φ
′(t) < ∞, and for all t A(t) >

0, φ′(t) > 0, |A′(t)|, |φ′′(t)| ≤ ε φ′(t).
Definition 3.2: Superposition of well-separated IMTs. A

function x(t) ∈ R consists of well-separated intrinsic

mode components, up to accuracy ε, and with separation

D, if there exists a finite number K such that x(t) =∑K
k=1 Ak(t) cos(2πφk(t)), where all the components are IMT

and their phase functions φk satisfy for all t: φ′
k(t) > φ′

k−1

and |φ′
k(t)− φ′

k−1(t)| ≥ D[φ′
k(t) + φ′

k−1(t)].
An important theorem from [6] ensures the CWT of an IMT

has most of its non-zero coefficients confined to a “ribbon”

around its local scale.

Theorem 3.1: If d(t) = A(t) cos(2πφ(t)) is an IMT

with accuracy ε, and ψ(t) is an analytic wavelet compactly

supported in frequency with supp ψ̂ ⊆ [fψ − Δ, fψ +

Δ], then |Wψ
d (t, s)| > ε1/3 only when (t, s) ∈ Z ={

(t, s)/|s− fψ
φ′(t) | < Δ

φ′(t)

}
.

(The ribbon is actually around fψ/φ(t)
′, where fψ is the peak

of the wavelet Fourier spectrum.)

Finally, the mode extraction amounts at find a ridge by

solving 2

max
c(t)

∫
Ex(t, s)dt− λ

∫
[c′(t)]2dt, (11)

where Ex(t, s) = log(|Tx(t, s)|2), and λ > 0 is the regular-

ization parameter. Then, the mode is estimated as

d(t) =

∫
|s−c(t)|< Δ

fψ
c(t)

Tx(t, s)ds. (12)

Unlike other approaches based on synchrosqueezing, we define

here a variable “ribbon width” which suits better to the

scale-dependent resolution of wavelet-based methods. For the

extraction of more than one mode, a deflationary strategy is

1The definitions from [6] are for complex signals. Since we are interested
on real signals, we slightly modify the definitions keeping however all of its
essence

2The actual implementation is on a discretized ridge c(n). We use the
Synchrosqueezing Toolbox [13] that implements a heuristic (greedy) approach
that maximizes the objective at each time index, assuming the objective has
been maximized for all previous time indices.
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usually applied: once the mode is extracted, its ribbon on

the time-scale representation is zeroed, and the next ridge

extraction is performed [14]. With these criteria, the modes

do not necessarily appear ordered by scale or frequency.

IV. PROPOSED ALGORITHM

A. A New Definition for a Mode

We propose here to define a mode, i.e. the part that locally

oscillates faster, of a given signal taking Eq. (5) as inspiration

but focusing on the mode instead of the local mean. If the

local mean is the result of a scaling function analysis evaluated

at a specific local scale, then the mode is the result of the

integration of a wavelet analysis from the finest scale to the

mentioned local scale. Combining Eqs. (1) and (5) with the

reconstruction formula (7), we obtain:

d(t) =
2

C̃ψ

Re

(∫ C α(t)

0

Wψ
x (t, s)

ds

s

)
, (13)

where α(t) is the local scale, and C a real constant later

explained. This idea explicitly implements the mode extraction

as a time-dependent high-pass filtering, widely discussed on

the EMD literature [9], [15].

B. The Local Scale

For the definition of the local scale we use the following

estimate:

Estimate 4.1: Let d(t) be an IMT, and t0 and t1 two con-

secutive local extrema of d(t). Then, provided ε is sufficiently

small,
1

2φ′(t0)
+

1

2φ′(t1)
≈ 2(t1 − t0). (14)

Sketch of the proof. The estimation is easily verified for a

pure tone. For the general case, we start by taking first order

Taylor approximation of φ(t) around both t0 and t1 (since ε
is small enough we can ignore the terms quadratic onwards):

φ(t) ≈ φ(t0) + φ′(t0)(t− t0)

φ(t) ≈ φ(t1) + φ′(t1)(t− t1)
(15)

Evaluating every approximation on the other extrema, and

adding member to member, we get

(φ(t1)− φ(t0))

(
1

φ′(t0)
+

1

φ′(t1)

)
≈ 2(t1 − t0). (16)

Next, applying the condition d′(t∗) = 0, which holds for t∗ =
t0 and t∗ = t1, leads to

φ(t1)− φ(t0) =
1

2π

[
π + arctan

(
A′(t1)

2πA(t1)φ′(t1)

)

− arctan

(
A′(t0)

2πA(t0)φ′(t0)

)]
.

(17)

Since both arguments of the arctangent functions are O(ε)
because of the bound on |A′(t)| given by IMT definition (Def.

3.1), it is demonstrated that φ(t1)−φ(t0) → 1/2 as ε → 0. �

This estimate tell us that we can approximate the mean

of the local scale in two consecutive local extrema as twice

the time distant between them. We also use the local extrema

of x(t) as estimations of those of the mode d(t) [16], [17].

Therefore we can define

α(t) = 2(t�+1 − t�), t� < t < t�+1, (18)

where {t�} are the local extrema of x(t). This idea dates back

from the original EMD contribution [7], where it is stated that

“...the characteristic time scale is defined by the time lapse
between the extrema...”. It is also mentioned in [18], where

the term empiquency was coined.

C. Discontinuity Problems and Synchroqueezing

Our piecewise constant estimation of the local scale might

cause some discontinuity problems for the mode d(t). In order

for d(t) to be continuous at t0 (local extremum of x(t))

it should be d(t0) = limt→t0
2
˜Cψ

Re
(∫ C α(t)

0
Wψ

x (t, s)dss

)
,

which can be guaranteed if Wψ
x (t0, s) = 0, for

min(α(t−0 ), α(t
+
0 )) < s < max(α(t−0 ), α(t

+
0 )). This is hardly

the general case. Therefore, synchrosqueezing must be used.

The synchrosqueezed CWT being a “sharped” version contains

less non-zero coefficients, while every mode domain becomes

“smaller”. We end up with

d(t) =
2

C̃ψ

Re

(∫ C α(t)

0

Tx(t, s)ds

)
. (19)

D. The Constant C

As for the constant C, we must look at Thm. 3.1. For an

IMT, the “ribbon” in its CWT is [
fψ−Δ
φ′(t) ,

fψ+Δ
φ′(t) ]. Since we are

only interested in the coarse-scale (therefore low-frequency)

border, and α(t) is an approximation of the instantaneous scale

1/φ′(t), then C = fψ +Δ is the right choice.

E. Local Scale Refinement

We must take into account the fact that the local extrema

of x(t) are estimations of those of the real unknown mode

d(t). After applying Eq. (19), the extrema of this proto-

mode are closer to those of the real mode than the extrema

from signal x(t). Therefore we can use them to perform a

refinement on α(t), and again estimate the mode d(t) from

the synchroqueezed CWT of x(t). This procedure is similar

to that of EMD’s sifting, but while on EMD its consists on

successive local mean extractions, here we use it only as a way

to improve the selection of the characteristic points to define

the local scale. This is congruent with some interpretations of

sifting as a better selection of characteristic points [10].

This refinement can be performed until a certain criterion,

such as 2
˜Cψ

Re(
∫ αd(t)

0
Td(t, s)ds)/||d(t)||2 being smaller than

certain threshold and the number of extrema of d(t) remain

the same as those of x(t). Here we emphasized that the local

scale was estimated from the proto-mode.
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F. Border Treatment

Our proposal presents border issues caused by the same

causes of those ef EMD. The local scale defined in Eq. (18) is

incomplete, because it is not defined between the left border

and the first local extremum, and between the last extremum

and the right border. Mirroring the extrema close to the borders

leads to good results.

V. EXPERIMENTAL RESULTS

For our experiments we used the bump wavelet, character-

ized by its Fourier transform

ψ̂(f) = e
1− 1

1−( f−fψ
Δ )

2

χ[fψ−Δ,fψ+Δ], (20)

which is compactly supported and admits a unique peak at

f = fψ . For the central frequency, we use fψ = 0.5, which is

the maximum normalized frequency for a discrete-time signal.

The scale resolution is conditioned by the parameter Δ. We

achieved good results with Δ = 0.25. We apply a deflationary

scheme: once the signal is decomposed in x(t) = d1(t)+a1(t),
the decomposition continues on a1(t). We compare our results

with those based on ridge detection. For this task we use the

algorithm from [13] with default parameters, and Eq. (12) for

mode estimation.

A. Superposition of AM-FM overlapped components

As a first example we present a typical case of AM-

FM components overlapped in both time and frequency.

The discrete-time signal x(n) = x1(n) + x2(n) + x3(n) is

composed of x1(n) = cos
(
2π
(

15
256n+ 9000

512π sin
(

2π
1000n

)))
,

x2(n) = cos
(
2π
(

15
768n+ 9000

1536π sin
(

2π
1000n

)))
, and x3(n) =

exp
(
−π
(
n−1000

250

)2)
sin
(
2π 3

256n
)
, for n = 1 . . . 2000, with

a separation of D ≈ 1/3 according to Def. 3.2.

The results can be appreciated in Fig. 1. The left panel

shows the ridge-based decomposition, with several “jumps”

from one ridge to another. In the right panel, the refinement of

the local scale is evident after only three iterations. The mean

square errors for our method are: 6.9× 10−4, 2.3× 10−3 and

1.3×10−3 respectively for modes first and second and residue.

The modes are superimposed with the true components, which

appear in dashed red. The errors for the ridge-detection based

method are: 2× 10−2, 2.5× 10−2 and 4.9× 10−3.

B. Nonlinear waveforms

As a second example we present a superposition of a

triangular wave whose wavelength shortens one after another

in a “linear chirp” manner, and an actual linear chirp of

the form c(n) = cos(2π2 × 10−5n2) for n = 1 . . . 2000.

The results are presented in Fig. 2. The triangular waveform

generates more than one ridge in the time scale representation.

The ridge-based mode extraction algorithm would scattered

the waveform into several modes (it would find at least three

ridges) and may also ignore the fine-scale (high frequency)

information, as we can see on the left panel of Fig. 2. These

limitations of the algorithms that rely on the one ridge -

one mode paradigm are currently tackled by new proposals,
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Fig. 1. Superposition of AM-FM components. Left panel: ridge-based
method. Right panel: our proposal. Top to bottom: signal x(n), syn-
chrosqueezed CWTs of x(n) and that for the second step, and the first two
modes and residue in black superimposed with the true components in dashed
red.
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Fig. 2. Superposition of a chirp and a triangular waveform. Left panel:
ridge-based method. Right panel: our proposal. Top to bottom: composed
signal, synchrosqueezed CWT of the signal, and the mode and residue in
black superimposed with the true components in dashed red. A zoom of the
squared portion of d1(n) is shown in the last row.
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such as nonlinear mode decomposition [19] and instantaneous

wave shape functions [20]. A second undesire behavior of the

ridge-based algorithm are the several jumps from one ridge to

another present in the second half of the signal. Our algorithm,

based on observed local extrema, is able to fully recover the

triangular waveform because it considers the information from

the finest scale to those scales defined as the distances between

extrema. A zoom of the squared portion of the first mode d1(n)
is shown in the last row of Fig. 2 for better appreciation.

Because the local extrema occurs at points where the signal

is not differentiable, the positions of the extrema from the

composed signal coincides with those of the actual mode

extrema. Thus, it was not necessary to perform a local scale

refinement. The mean square error is: 2.9× 10−3. As before,

we superimposed the modes with the true components. The

error for the ridge-based algorithm is: 4.9× 10−2.

VI. CONCLUSION

We developed a mode decomposition algorithm merging

synchrosqueezing ideas with those of EMD’s. The locality

and data-driven nature of this last method which are based

on the local extrema of the signal as characteristic points to

define a local scale met with the solid theory behind wavelets

and synchrosqueezing. The result is a method as data-driven

as EMD, avoiding splines, or any kind of interpolation in the

temporal domain. The choices to be made in our algorithm,

such as the wavelet and its parameters are comparable to

those to be made in EMD: interpolation scheme and stopping

criterion.

The proposed method was successfully tested on two arti-

ficial signals with components overlapped in time and fre-

quency. Moreover, one of the signal contained a nonlinear

triangular waveform which generates several ridges in the

time-scale plane. Our method was able to isolate it as a whole.

Our idea of performing an EMD decomposition in a time-

scale framework should help to a better understanding of how

EMD works. The problems to analyze are those which were

used for pioneer analysis of EMD: two tone separation [8]

and white noise decomposition [21]. It may also help to shed

some light in the noise-assisted field [22]. This issues will be

soon addressed in a future work.

This method should be soon tested on the most recent

developments on time-scale representations such as invertible

reassignment and second-order synchrosqueezing [23], or the

Levenberg-Marquardt recursive synchrosqueezing [24].
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théorie, l’algorithmie et l’analyse de performances,” Ph.D. dissertation,
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