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Abstract—Conventional voice activity detectors (VAD) mostly
rely on the magnitude of the complex valued DFT spectral
coefficients. In this paper, the circular variance of the Discrete
Fourier transform (DFT) coefficients is investigated in terms of
its ability to represent speech activity in noise. To this end we
model the circular variance as a random variable with different
underlying distributions for the speech and the noise class. Based
on this, we derive a binary hypothesis test relying only on the
circular variance estimated from the noisy speech. The exper-
imental results show a reasonable VAD performance justifying
that amplitude-independent information can characterize speech
in a convenient way.

Index Terms—Voice activity detection, phase spectrum, circu-
lar variance, speech enhancement.

I. INTRODUCTION

For robust speech applications, detection of speech presence
is of high importance as an initial processing step. Voice activ-
ity detectors are an indispensable component in reliable speech
communication systems as they avoid unnecessary processing
of non-speech frames. Thus, a voice activity detector (VAD)
is often employed as a front-end for various speech processing
applications including automatic speech recognition, speaker
recognition and speech coding.

Various representations and speech features have been uti-
lized for VAD, including: energy and zero crossing rate [1],
Mel-frequency cepstral coefficients (MFCCs) [2], the squared
STFT magnitude [3], long-term spectral envelope [4], long-
term signal variability (LTSV) [5], perceptual spectral flux [6],
long-term temporal information and harmonic-structure [7],
and the generalized auto-regressive conditional heteroscedas-
ticity (GARCH) filter to model speech in time domain [8]. Fur-
ther studies reported fusing multiple features using machine
learning techniques, such as deep belief network [9], support
vector machine [10] and minimum error classifier [11].

This paper aims to solve the voice activity detection problem
in the STFT domain. Similar to many other speech processing
applications the spectral phase has been neglected for voice
activity detection in the last decades, VAD methods formulated
in the spectral domain focused on information carried by the
spectral magnitude of speech (e.g. [3]). The reason behind this
is the circumstance that the instantaneous phase spectrum does
not reveal any intuitive, directly accessible information about
the underlying speech signal. In order to circumvent the anal-

ysis of the instantaneous phase directly several phase-derived
features such as the delta-phase spectrum [12], the base-band
phase difference [13], phase distortion deviation [14], group
delay and modified group delay [15] have been proposed
in order to characterize speech in various applications. Two
methods that exploit the complex nature of DFT coefficients
are the approaches presented in [12] and [16]. Wisdom et al.
[16] propose a method relying on the complex domain to
solve VAD. They employ the degree of impropriety (DOI)
combined with a generalized likelihood ratio test (GLRT),
reporting a successful discrimination between the speech plus
noise and noise-only classes. Their proposed features took into
account the second-order statistics of the complex data, namely
the impropriety of a complex sub-band. As speech shows a
higher degree of impropriety than noise it can be classified by
means of this feature. Alternatively, the modulation spectrum
information modeled by temporal phase changes was used for
VAD in speaker recognition [12]. This approach, based on
the delta-phase spectrum could successfully employ a phase-
derived feature for VAD.

In the last years the discipline of phase-aware speech
processing has been an emerging field. For example, some
recent studies reported that phase information contributes to
push the limited performance of existing solutions [17]–[19].
In this regard, we propose the circular variance of a complex
DFT coefficient as a possible amplitude-independent feature
for VAD. The classification is achieved by a binary hypothesis
test framework. Our experiments show that the proposed VAD
performs comparable to magnitude-only approaches highlight-
ing the importance of phase information in the context of
speech processing.

The rest of this paper is organized as follows; In Section II
we present the underlying signal model and the circular vari-
ance as the proposed feature as well as its statistical properties.
Section III explains the classification procedure itself and the
evaluation of the proposed method is presented in Section IV.
Finally, Section V concludes on the work.

II. PROPOSED PHASE-BASED FEATURE

A. Signal Model and Notations

Let Y (k, `) = |Y (k, `)|ejϑ(k,`) be the noisy DFT coefficient
at frequency bin k and frame index ` with |Y (k, `)| and ϑ(k, `)
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as the spectral amplitude and phase. Similarly, S(k, `) and
D(k, `) are the DFT coefficients of the clean speech and
the noise signal, respectively. The voice activity detection
is formulated as a classification of frames where speech is
present (hypothesis H1) or absent (hypothesis H0)

H0 : Y (k, `) = D(k, `) (1)
H1 : Y (k, `) = S(k, `) +D(k, `) (2)

In the following, we describe the proposed phase-derived
feature called circular variance that is used for VAD later on.

B. Circular Variance

Let x(k, `) denote the circular variance of a random variable
with realization

z(k, `) = ejϑ̃(k,`) = u(k, `) + jv(k, `), (3)

where ϑ̃(k, `) denotes the unwrapped phase derived from the
wrapped noisy phase ϑ(k, `) by using e.g. [20].

The circular variance is estimated by taking into account
the absolute value of the sample mean z(k, `) of z(k, `) [21]

x(k, `) = 1−R(k, `), (4)

R(k, `) =

∣∣∣∣ 1L
`+L

2 −1∑
`′=`−L2

z(k, `′)

︸ ︷︷ ︸
z(k,`)

∣∣∣∣, (5)

where R(k, `) denotes the mean resultant length. It follows
that for the circular variance we have x(k, `) ∈ [0, 1].

In contrast to the assumption that the phase of the speech
DFT-coefficients is uniformly distributed, we argue that the
DFT phase is concentrated around a mean value, following
a von Mises distribution1 [22]. By employing the von Mises
distribution, high concentration of the phase around a mean
value can be modeled as well as the uniform distribution
which can be considered as a special case of the von Mises
distribution with zero concentration at all, representing the
maximum uncertainty in phase. We consider voiced phonemes
as a sum of sinusoids. The individual sinusoids’ phases in
the first frame are denoted as the initial phase values. The
phase values of the successive frames are mainly determined
by the frame-shift and the initial phase since the sinusoidal
parameters do not change abruptly, resulting in a low circular
variance x(k, `) as illustrated in Figure 1.

From these considerations it follows that low circular
variance regions reveal the presence of voiced speech while
noise-like components yield a higher circular variance. This
motivates us to employ the circular variance as an indicator of
speech activity. Furthermore, in previous studies the circular
variance has been reported useful for single-channel speech
enhancement [24], [25]. In order to support these claims,
Figure 1 illustrates the speech structure revealed by the circular

1The von Mises distribution, also known as Tikhonov distribution, is a
circular distribution, parametrized by the mean direction (angle) µ and the
concentration parameter κ.

Fig. 1. (Left) Magnitude spectrogram and (Right) circular variance shown
for the utterance “She had your dark suit in greasy wash water all year.”
by female speaker from TIMIT [23]. The harmonic structure is revealed by
(left) the spectrogram (right) circular variance regions. The circular variance
is close to zero in the case of speech presence (justified by the spectrogram).

variance similar to the spectrogram. Especially the harmonic
characteristics of speech are nicely represented by low circular
variance.

The proposed VAD works in two stages: first a voice activity
decision is made at DFT-bin level. Then, in the second stage
the DFT-bins decisions are taken into account to make a frame-
level VAD decision. As the circular variance is assumed to be
close to zero for speech-present regions and close to one for
speech absent regions, the bin-level decision is achieved by a
binary hypothesis test based on the estimated circular variance
from the noisy observation calculated in (4).

Namely, the binary hypothesis test classifies the observed
noisy speech into either of the two classes H0 (noise only) and
H1 (speech plus noise). To this end we examine the circular
variance feature with respect to its distribution for each of the
two classes. In order to derive a distribution for the circular
variance estimate of noise, we rewrite the sample mean of the
complex variable z(k, `) as follows

z(k, `) = u(k, `) + jv(k, `), (6)

with u(k, `) and v(k, `) denoting the sample mean values of
the real and imaginary parts of z(k, `) in (3). The unwrapped
phase ϑ̃(k, `) is assumed to be uniformly distributed for
noise dominated regions which implies highly uncorrelated
realizations of the random variable z(k, `). Using the central
limit theorem we model the real and imaginary parts as
mutually independent, normal distributed random variables
(u, v)

iid∼ N
(
0, σ2

)
. If the real and imaginary part of a com-

plex variable z(k, `) are independent and normal distributed
then its absolute value R(k, `) follows a Rayleigh distribution.

For the speech class we expect a higher correlation among
successive samples used to estimate the circular variance,
imposing a more heavy-tailed distribution for the circular
variance. This indicates that the phase in speech present
regions is not uniformly distributed but is rather concentrated
around a mean value. This assumption in particular holds
for voiced speech whereas for unvoiced speech a noise-like
distribution is appropriate. To model the speech, for the voiced
portion an Exponential and for the unvoiced portion a Rayleigh
distribution is employed. The outcome of these approximations
is illustrated on the left panel in Figure 2. It follows that
the speech class can only be reliably discriminated from the
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Fig. 2. (Left) empirical circular variance distribution for 50 minutes of
clean speech [23] with distribution-fits modeling the voiced (dashed red curve)
and unvoiced (green dashed curve) portions of the speech (blue solid curve)
(Middle) Rayleigh distribution and empirical distribution for 50 minutes of
car noise, window down [26] (Right) empirical circular variance distributions
for 50 minutes of noise corrupted speech at 0 dB (car noise, window down).

noise class in the presence of voiced speech. For the sake of
simplicity we will drop the indices k and ` in the following.
Hence, the distributions for the two hypotheses H0 and H1

are therefore given by

p(x,H1)=

Pλe−λx + (1− P ) 2x
σ2
1
e
− x2
σ21 , if 0 ≤ x ≤ 1

0, otherwise
(7)

p(x,H0)=

 2x
σ2
0
e
− x2
σ20 , if 0 ≤ x ≤ 1

0, otherwise
(8)

where P is the prior probability that speech is voiced and λ
is the real valued parameter of the Exponential distribution.
The scale parameters of the Rayleigh distributions, σ1 and
σ0, account for the unvoiced speech together with the noise
contribution in equation (7) and the noise circular variance in
equation (8). Here, we confine the conventional distributions
to the range of the circular variance, i.e. [0, 1], resulting in a
small truncation error of < 0.04%.

To further justify the selected feature for VAD, Figure 2
shows the empirical distributions as well as the fitted pdfs for
the two classes evaluated over 50 minutes of car noise from
QUT-NOISE-TIMIT [26]. The Rayleigh distribution accu-
rately approximates noise classes matching the typical assump-
tion of low correlation among successive samples very well.
Unvoiced speech follows a more noise-like distribution than
voiced speech and, therefore, is less discriminated from the
noise class. Since the circular variance can only discriminate
voiced speech from noise, we detect voiced frames only. The
so-obtained decisions are extended to general VAD by using
a longer window when smoothing the raw VAD decisions
similar as reported in [27]. Based on this we approximate
the pdf of speech with an Exponential distribution, which
models the low circular variance regions corresponding to
voiced frames very well.

III. PROPOSED VAD

A. Bin-Level Processing

To classify a single observed DFT-bin we apply the binary

decision rule x
H0

≷
H1

xth which results in the binary hypothesis

test

H0 : x > xth, (9)
H1 : x < xth, (10)

where xth is defined as the threshold of circular variance
discriminating between the speech-absent and speech-present
class. The observed circular variance is interpreted as a random
variable with statistical independent realizations. Throughout
our experiments we observed that the circular variance struc-
ture of higher order harmonics of the fundamental frequency
is likely to be impaired by the additive noise. Therefore,
in order to achieve more distinctive characteristics for voice
activity detection, the frequency range considered is restricted
to the interval [80, 500]Hz. The choice of this interval could be
further optimized by considering additional prior information
such as an f0-estimate, which would on the other hand add
more complexity to the proposed algorithm.

B. Frame-Level Processing

To achieve a frame-level VAD, the DFT-bin level decisions
have to be interpreted accordingly. Frame ` is classified with
respect to the number of voice-active bins denoted by n(l).
We seek for a threshold nth that distinguishes between the two
classes based on the number of voice active bins per frame.
This can be accomplished by a binomial test, described in the
following.

The probability to observe a circular variance that exceeds
the threshold xth for the speech-absent case, similar to [28]
is given by

PH0

(
x > xth

)
=

∫ 1

xth

p(x,H0) dx. (11)

Since the realizations of x are statistically independent, the
probability of observing more than nth speech active bins in
an speech inactive frame can be expressed as follows

P
(
n ≥ nth

)
=

N∑
n=nth

(
N

n

)
(1− PH0

(
x > xth

)
)n(PH0

(
x > xth

)
)N−n,

(12)

where N is the total number of DFT-bins within the analyzed
range. The value obtained in (12) is proportional to the
risk of a false alarm and depends on the threshold nth. By
thresholding and the choice of Pth and we have

P
(
n ≥ nth

)
≤ Pth. (13)

The threshold nth is the smallest value that satisfies (13). For
the proposed method, Pth was chosen by means of the cross-
validation scheme described in Section IV.

To deal with different non-stationary noise types, the empir-
ical distribution p(x,H0) is updated after the first 200 voice-
inactive frames to adapt the threshold nth accordingly. To
this end, it is important to keep the miss rate relatively low
at the beginning of the analysis procedure, otherwise voice
activity could influence the empirical noise distribution. Thus,
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an initial PH0
(x > xth) = PH0,init needs to be selected, low

enough to keep the risk of such errors small. On the other hand,
the parameter PH0,init should still allow for the detection of
speech activity at the beginning of the analysis. This is why
we chose PH0,init = 0.5.

The parameter xth was set to 0.1 motivated by the intersec-
tion point of the empirical distributions. Finally, to cope with
the fluctuations in the raw VAD decisions, a moving average
filter of 800ms is applied, similar to [27].

IV. EVALUATION

A. Experiment Setup

The DFT size in the STFT is 256 samples. The frame-shift
is 1 sample, in order to avoid phase-unwrapping inaccuracies.
In the course of our experiments we found that the sampling
rate of the original signal can be reduced up to a certain degree
without affecting the performance of the algorithm. Therefore,
for the sake of reduced computational complexity, we down-
sampled the signal to 2 kHz. The circular variance is estimated
by taking into account a 40ms (L = 80 samples) time span
for each frequency bin k.

For the evaluation of the proposed VAD method we chose
the scheme recommended in [26] together with the QUT-
NOISE-TIMIT database specified therein. The database con-
sists of 600 hours of noise-corrupted speech. While the clean
speech files were obtained from TIMIT [23], the noise was
recorded at 10 different locations in 2 sessions where 2 loca-
tions form 1 scenario, resulting in 5 distinct noise scenarios.
This allows for a two-fold cross-validation of algorithmic
parameters (in our case to tune for Pth) between two locations
for each noise scenario, providing unbiased test results over
the entire corpus. The noise corrupted speech is obtained by
randomly selecting clean speech files and mixing them with
the noise recordings at various SNRs. The resulting files have
a length of 60 and 120 seconds. The amount of speech within
a file is set so that 25% of the noisy files have 0%− 25% of
speech, 50% have 25%−75% and again 25% have 75%−100%
of speech. The start positions of the utterances are selected
randomly. In addition to the audio-data, the reference VAD
labels for evaluation are provided from [26]. For a detailed
description of the QUT-NOISE-TIMIT database we refer to
[26].

In our evaluation the following benchmark methods are
chosen: Sohn [3] as a standard amplitude-only statistical model
based method, the impropriety-based algorithm [16] which
takes into account not only the amplitude information of the
complex DFT coefficients but also the phase by analyzing
its impropriety, and AZR [27] which combines the auto-
correlation function (ACF) with the zero crossing rate (ZCR),
both revealing the signal periodicity. The cross-validation
scheme depicted above is employed to obtain the parameter
settings of the benchmark methods. The implementation of
Sohn’s method utilizes the minimum-statistics noise PSD
estimator [29].

Similar to [16], here we quantify the VAD performance in
terms of the following evaluation criteria: i) false alarm rate

(FAR), ii) miss target rate (MR), and iii) half total error rate
(HTER = FAR+MR

2 ). It is important to note that the MR and
the FAR are strongly influenced by the length of the moving
average filter and the threshold Pth: the longer the filter and
the lower the parameter Pth, the higher the FAR gets while
the MR decreases.

B. VAD Results

The results shown in Table I are averaged over all noise
scenarios. Following [26], we summarize certain SNRs to
regions of Low Noise (10 or 15 dB), Medium Noise (0 or
5 dB) and High Noise (−10 or −5 dB). Additionally, to give
more insights into the performance of the particular VAD
methods, in Figure 3 we report bar plots, illustrating the HTER
performance for each noise scenario and SNR. The following
observations are made:
• The AZR method [27] consistently performs best, illus-

trating the successful fusion of two features: ACF and the
ZCR.

• Among the VADs using a single feature, impropriety
performs best in terms of HTER for high and medium
noise.

• The proposed VAD performs comparable to the
amplitude-only approach of Sohn in most scenarios.

• The circular variance, although not being the best per-
forming feature, turns out to be a reliable feature for
VAD. It is capable of detecting speech activity in an
adverse noisy scenario.
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Fig. 3. Individual HTER (%) results for different noise scenarios. The bars
are divided into two panels, indicating the MR (%) (darker panel) and FAR
(%) (lighter panel).

V. CONCLUSIONS

We presented a new voice activity detector (VAD) relying
on information extracted from the noisy observation. In the
proposed method, a binary hypothesis test framework was
derived in the circular variance domain with no requirement of
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TABLE I
Overall VAD results averaged across 10 different noise types for different SNR regions.

Method Low Noise: 15 or 10 dB SNR Medium Noise: 0 or 5 dB SNR High Noise: −10 or −5 dB SNR
%FAR %MR %HTER %FAR %MR %HTER %FAR %MR %HTER

Sohn [3] 24.4 12.2 18.3 24.8 25.9 25.3 25.0 47.1 36.0
AZR [27] 15.6 6.6 11.1 20.5 12.1 16.3 31.9 25.5 28.7

Impropriety [16] 27 7.2 17.1 22.8 17.1 20.0 17.9 45.9 31.9
Proposed 23.7 9.9 16.8 21.7 29.2 25.4 20.4 56.8 38.6

a noise PSD estimator. The intention about our VAD proposal
was to emphasize that there are amplitude-independent char-
acteristics in speech eligible to discriminate it from noise. Our
results demonstrated that such a VAD is capable of yielding
comparable results to amplitude-only benchmarks.

The current work motivates for further studies on combining
the conventional amplitude-only VADs with the phase-based
proposal, in order to benefit from the complementary sources
of information, especially for unvoiced speech to improve the
overall VAD performance.
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