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ABSTRACT

Suppose two finite signals are related by an unknown cyclic

shift. Fast algorithms for finding such a shift or variants

thereof are of great importance in a number of applications,

e.g., localization and target tracking using acoustic sensors.

The standard solution, solving shift finding by maximizing

the cross-correlation between the two signals, may be rather

efficiently computed using fast Fourier transforms (FFTs).

Inspired by compressive sensing, faster algorithms have been

recently proposed based on sparse FFTs. In this paper, we

transform the shift finding problem into the spectral domain

as well. As a first contribution, by combining the Fourier

Shift Theorem with the Bézout Identity from elementary

number theory, we obtain explicit formulas for the unknown

shift parameter. This leads to linear time algorithms for shift

finding in the noise-free setting. As a second contribution,

we extend this result to the fast recovery of weighted sums

of two shifts. Furthermore, we introduce a novel iterative

algorithm for estimation of the unknown shift parameter for

the case of noisy signals and provide a sufficient criterion for

exact shift recovery. A slightly relaxed criterion leads to a

linear time median algorithm in the noisy setting with high

recovery rates even for low SNRs.

Index Terms— Shift Retrieval, Compressive Sensing,

Fourier Transform, Bézout Identity, TDE, TOA, TDOA

1. INTRODUCTION

In numerous applications one encounters pairs of time-

dependent signals that are related by a time shift. The re-

trieval of time shifts is often referred to as time delay estima-

tion (TDE), with TOA (estimate the time difference between

a transmitted signal and its echo) and TDOA (estimate the

time difference of arrival of a signal contained in two sensor

signals) as two variants [1]. TDE has a wide range of appli-

cations in signal detection, synchronization, localization, and

tracking. Examples are acoustic target tracking [2], speaker

localization [3], and packet synchronization in ultra wideband

wireless transceivers [4].

In this paper, we discuss the following shift retrieval prob-

lem. Each instance of this problem consists of two signals: a

reference signal a ∈ CN , which is known in advance and

which might be preprocessed. Throughout this paper we as-

sume that a differs from all its proper cyclic shifts. The sec-

ond signal is the received signal b ∈ CN which is a possibly

noisy version of a cyclic ℓ-shift of a for an unknown posi-

tive shift parameter ℓ < N . The task is to recover ℓ with a

minimum amount of computation time and storage space.

A standard procedure for computing ℓ is to correlate the

received signal with all possible shifts of the reference signal

in the time domain. The correct shift is the one that max-

imizes the correlation. This cross-correlation approach has

computational complexity O(N2). More efficient procedures

are based on the fact that the cross-correlation vector coin-

cides with the cyclic convolution of a∗
−N (the complex conju-

gate of the time reversed version of the reference signal) with

the received signal. By the convolution theorem, the Fourier

transform of a convolution is the pointwise product of Fourier

transforms: F(a∗
−N ∗ b) = F(a∗

−N ) · F(b). Hence

a
∗
−N ∗ b = F−1(F(a∗

−N ) · F(b)) (1)

describes an alternative way to compute the cross-correlation

vector a∗
−N ∗ b. Thus shift finding via FFT and IFFT needs

only O(N logN) arithmetic operations. Meanwhile, inspired

by compressed sensing techniques, there exists faster algo-

rithms for shift finding. In [5], Hassanieh et al. have designed

a linear time algorithm for shift finding by exploiting the fact

that the cross-correlation vector is sparse and spikes at the

correct time shift. In [6], Andoni et al. proposed a procedure

for shift finding whose asymptotic running time is even sub-

linear in N . Interestingly, although inspired by sparse FFT

techniques, this algorithm works completely in the time do-

main. As the basic algorithm in [6] recovers the true shift ℓ for

binary signals “with high probability,” it remains to study the

recovery rate of this TDE algorithm for more general input

signals.

The primary goal of this paper is to solve the shift find-

ing problem completely in the spectral domain. This avoids

an inverse Fourier transform. In Section 2 we propose an

approach for solving this problem in a noise-free scenario.

Here, we uncover the close connection between shift retrieval

and GCD computations. Combining the Fourier Shift Theo-

rem with Bézout’s Identity we obtain several explicit formu-

las for the unknown shift, resulting in linear time algorithms
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for shift finding. In Section 3 we extend this technique to the

case, where the received signal is a linear combination of two

(noise-free) shifts of the reference signal, which has applica-

tions in scenarios involving echoes.

The remaining part of this paper discusses shift retrieval

in the noisy setting. For ease of presentation, we restrict our-

selves to signals of length N = 2n. In Section 4 we propose

a novel method for estimating the unknown shift parameter

ℓ iteratively. We furthermore provide a sufficient criterion

for exact shift recovery. For this iterative estimation we only

need from both signals the Fourier coefficients corresponding

to indices which are powers of two. All these indices can be

computed in linear time. As the sufficient criterion is hard to

check in an application scenario, we relax on the one hand this

criterion and compensate on the other hand this relaxation by

using several noisy versions of the reference signal to attenu-

ate the influence of noise. This results in a linear time median

method for shift estimation with high recovery rates (> 90 %)

even for low SNRs.

Notation: For a (nonzero) complex number z ∈ C, Re(z)
denotes its real part, |z| its absolute value, z∗ its complex con-

jugate, and arg(z), 0 ≤ arg(z) < 2π, its argument or phase.

With this notation, z = |z| · exp(i · arg(z)). For integers

m ≤ n let [m,n] := {x ∈ Z | m ≤ x ≤ n}. Finally, we

denote by x mod N ∈ [0, N−1] the remainder after division

of x ∈ Z by N ∈ N.

2. NOISE-FREE COMPRESSIVE SHIFT RETRIEVAL

This section discusses the noise-free case, i.e., the received

signal is a cyclic shift of the reference signal. The goal is

to compute the unknown shift efficiently. Theorem 1 below

presents two explicit formulas for the unknown shift. These

formulas establish a flexible tool for the recovery of the un-

known shift in linear time.

Let a = (a0, . . . , aN−1)
⊤ and b denote two complex-

valued signals of finite length N . Suppose, b is a cyclic shift

of a, i.e., bk = ak−ℓ mod N , for an unknown positive shift

parameter ℓ < N . (The signal b is then the ℓ-shift of a; nota-

tion: b = Cℓ(a).) To efficiently recover ℓ, we transform the

shift finding problem into the spectral domain and consider

the Fourier transforms A = (A0, . . . , AN−1)
⊤ and B of a

and b, where

Ak =
∑

n<N

ωk·nan and Bk =
∑

n<N

ωk·nbn.

Here ω denotes a primitive N th root of unity. We take

ω := exp(2πi/N). Using ωm+n = ωm+n mod N and

bk = ak−ℓ mod N , a simple calculation yields the well-known

Fourier Shift Theorem: Bk = Akω
kℓ. If Ak 6= 0, we obtain

the fundamental equation

Bk/Ak = ωk·ℓ. (2)

As we are mainly interested in recovering the unknown posi-

tive shift parameter ℓ, our next goal is to get rid of the factor

k in the exponent. Here, the following fact from elementary

number theory turns out to be very useful.

Bézout identity. If g ∈ N is the greatest common divisor

of the integers n1, . . . , nr, then there are integers n′
1, . . . , n

′
r

with g = n1n
′
1 + . . .+ nrn

′
r.

For GCD algorithms computing (g;n′
1, . . . , n

′
r) on input

(n1, ..., nr) in time subquadratic in the bit-lengths, in our case

logN , we refer to [7]. Note that in contrast to g the se-

quence of Bézout coefficients (n′
1, . . . , n

′
r) is not uniquely de-

termined by (n1, . . . , nr). For example, if (n1, n2) = (8, 12),
then g = 4 and both 4 = (−1)·8+1·12 and 4 = 2·8+(−1)·12
are possible corresponding Bézout identities. Now we are

well-prepared to state our first result.

Theorem 1. Suppose b is the ℓ-shift of a ∈ CN with an

unknown positive shift parameter ℓ < N .

(a) Let k ∈ [1, N − 1] and N be coprime and let 1 =
gcd(k,N) = kk′ +NN ′ be a corresponding Bézout identity.

If the kth Fourier coefficient Ak is nonzero, then the shift

parameter ℓ can be recovered from Ak, Bk, and k′ via

ℓ = arg((Bk/Ak)
k′

) ·N/(2π). (3)

(b) Let K denote a nonempty subset of [1, N−1] with Ak 6= 0
for all k ∈ K. If the greatest common divisor of all k ∈ K
is 1 and 1 =

∑
k∈K kk′ is a corresponding Bézout identity,

then the knowledge of all pairs (Ak, Bk)k∈K and the vector

of Bézout coefficients (k′)k∈K is sufficient to recover the un-

known shift parameter ℓ:

ℓ = arg
(∏

k∈K

(Bk/Ak)
k′)

·N/(2π). (4)

Proof. (a) With the fundamental equation (2) we obtain

(Bk/Ak)
k′

= ωkℓ·k′

= ω(1−NN ′)·ℓ = ωℓ. As arg(ωℓ) =
2πℓ/N , (3) is valid.

(b) Applying the fundamental equation (2) again we ob-

tain
∏

k∈K(Bk/Ak)
k′

=
∏

k∈K ωkk′
·ℓ = ω

∑
k∈K

kk′
·ℓ = ωℓ.

Thus arg(
∏

k∈K(Bk/Ak)
k′

) = arg(ωℓ) = 2πℓ/N , hence

(4) is valid. �

Theorem 1 simplifies and generalizes the results of Sec-

tion III in [8], in addition, our result avoids the usual hypoth-

esis testing. Moreover, GCDs are not restricted to positive

indices k coprime to N but our result allows, e.g., to work

with arbitrary coprime pairs independent of N . This enhances

the applicability of compressive sensing considerably. The

number of k ∈ [1, N − 1] which are coprime to N (these

are the potential candidates in (a)), is given by Euler’s totient

function ϕ evaluated at N . It is well-known that ϕ(N) =
N/

∏
p(1− (1/p)), where the product runs through all prime

divisors p of N . For example, ϕ(2n) = 2n−1, i.e., if N is a

power of two, then half of the indices k are candidates for ap-

plying Theorem 1(a). Now consider N = 2·3·5·7·11 = 2310.
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Then ϕ(N) = 1·2·4·6·10 = 480. In this case, only 20.8% of

the indices k are candidates for applying Theorem 1(a). The

next result points to preferable candidate pairs.

Corollary 2. Let a ∈ CN and suppose b = λ · Cℓ(a) with

unknown parameters 0 6= λ ∈ C and ℓ ∈ [1, N − 1]. If Ak

and Ak+1 are nonzero, for some k ∈ [0, N − 2], then λ and ℓ
can be uniquely recovered from Ak, Bk, Ak+1, and Bk+1.

Proof. First note that in this case, there is a trivial correspond-

ing Bézout identity: 1 = 1 · (k+1)+(−1) ·k. As the Fourier

transform is linear, we obtain with equation (2)

Bk+1

Ak+1
·
Ak

Bk
=

λ · ω(k+1)ℓAk+1

Ak+1
·

Ak

λ · ωkℓAk
= ωℓ ,

which allows to recover ℓ. Finally, λ = Bk/(ω
kℓAk). �

Here is a concrete example. Let N = 12 and A2 ·A3 6= 0.

As both 2 and 3 are not coprime to 12, Theorem 1(a) is not

applicable in contrast to Corollary 2.

3. FAST RECOVERY OF THE WEIGHTED SUM OF

TWO SHIFTS

In this section we approach shift retrieval for scenarios where

the signal b is the weighted sum of shifted versions of a. An

important application scenario is the estimation of echo com-

ponents. To model superimposed shifted signals, we consider

signals a and b = λ ·Cℓ(a)+ρ ·Cr(a). On input a and b our

goal is to recover the unknown positive shift parameters ℓ 6= r
(both smaller than N ) and the unknown positive rational (!)

numbers λ and ρ.1 We start with the case λ = ρ = 1.

Theorem 3. Suppose b = Cℓ(a) + Cr(a) is the sum of two

cyclic shifts of a ∈ CN with unknown positive shift parame-

ters ℓ 6= r both smaller than N . If k ∈ [1, N − 1] and N are

coprime, 1 = kk′ + NN ′, and if the kth Fourier coefficient

Bk does not vanish, then the unknown shift parameters ℓ and

r can be recovered from Ak, Bk, and k′ via (3) and formula

(5) below.

Proof. As the Fourier transform is linear, we obtain Bk =
Ak · (ωkℓ + ωkr), see (3). By assumption, Bk 6= 0, hence

both Ak and ωkℓ + ωkr do not vanish. After division by Ak

we know 0 6= ωkℓ + ωkr =: 2 · z. Now |z| < 1 (because

ℓ 6= r) and the line Λ through z, which is perpendicular to the

line through the origin and z, intersects the unit circle in ωkℓ

and ωkr. For an illustration see Figure 1.

More precisely, Λ = {z + x · i · z | x ∈ R}. Thus we

are looking for all x ∈ R with |z + x · i · z| = 1. An easy

calculation yields the two solutions x = ±
√
|z|−2 − 1. Thus

we know both ωkℓ and ωkr:
{
ωkℓ, ωkr

}
=

{
z · (1± i ·

√
|z|−2 − 1)

}
. (5)

1In view of some applications involving radio-frequency (RF) signals, the

scaling of shifted signals may be complex-valued. However, positive rational

numbers as scalars are crucial in our proof of Theorem 4.

z
ωkℓ

ωkr
ωkℓ+ωkrΛ

Fig. 1. Fast recovery of the shift parameters ℓ and r.

As k and N are coprime, we can apply formula (3) to

recover the unknown shift parameters ℓ and r. �

We generalize Theorem 3. (Recall Euler’s totient function.)

Theorem 4. Suppose b = λ·Cℓ(a)+ρ·Cr(a) is the weighted

sum of two shifts of a ∈ CN with unknown positive shift

parameters ℓ 6= r smaller than ϕ(N) and unknown positive

rational (!) numbers λ and ρ. If k ∈ [1, N − 1] and N are

coprime and if the Fourier coefficients B0 and Bk do not van-

ish, the unknown parameters ℓ, r, λ, and ρ can be uniquely

recovered from A0, B0, Ak, and Bk in time linear in N .

Proof. By our assumptions we obtain in the spectral domain

0 6= Bk = Ak · (λ ·ω
kℓ+ρ ·ωkr) and 0 6= B0 = A0 · (λ+ρ).

Hence λ+ρ = B0/A0 can be recovered. Let µ := λ/(λ+ρ).
Although µ is unknown, we know that

Z :=
Bk

Ak
·
A0

B0
= µ · ωkℓ + (1− µ) · ωkr

is a convex combination with rational coefficients of the

unknown roots ωkℓ and ωkr. Similar to Figure 1, we con-

sider the line Λ through Z which is perpendicular to the line

through the origin and Z. In Figure 2, only the corresponding

chord of Λ is shown (in black). As Z is a convex combination

of two N th roots of unity, the chord defined by these two

roots (shown is green) is either equal to the black chord, in

which case µ = 1/2 and we are in the situation of Theorem

3, or the two chords are different. In the latter case, one of the

roots we are looking for is among the blue ones. To find the

other root, we use Cartesian coordinates. For every blue root

X = (x1, x2) let Y = (y1, y2) denote the point where the ray

through Z = (z1, z2) starting at X intersects the unit circle.

An easy calculation shows that Y = wZ + (1−w)X , where

w = v/(||Z||2 − 1+ v), v = 2 · (1−Z ·X⊤). Looking at the

phase, one can check whether Y is another N th root of unity.

As each triple (X,Y, root test) can be processed in constant

time, the overall running time is linear in N .

It should be remarked that ℓ and r are uniquely deter-

mined as long as ℓ and r are smaller than ϕ(N). This follows

from the fact that the roots 1, ω, ω2, . . . , ωϕ(N)−1 form a Q-

basis of the N th cyclotomic field Q(ω), which is the small-

est subfield of C containing Q and ω, see, e.g., Chapter VI.3

in [9]. Finally, combining B0/A0 = λ + ρ with the fact that

|ωkℓ − Z|/|ωkℓ − ωkr| ∈ {µ, 1 − µ} allows us to recover λ
and ρ. This concludes the proof of Theorem 4. �
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Fig. 2. Fast recovery of the parameters in λ · ωkℓ + ρ · ωkr.

4. NOISY COMPRESSIVE SHIFT RETRIEVAL

In this section we study a noisy version of compressive shift

retrieval. More precisely, we assume that a ∈ CN is a noise-

free known reference signal whereas b̃ is a noisy version of

b = Cℓ(a), ℓ < N an unknown positive shift parameter. Thus

b̃ = b + n, for some additive noise vector n. In the spectral

domain we thus have B̃ = B +N . If Ak 6= 0, we obtain the

following noisy version of the fundamental equation (2)

B̃k

Ak
=

Bk

Ak
+

Nk

Ak
= ωkℓ +

Nk

Ak
. (6)

Keeping this notation, the next result indicates how to com-

pute the unknown shift parameter ℓ iteratively starting with

the least significant bit. Before going into the technical de-

tails, we will illustrate the basic idea. Let N = 2n and

M := N/2. Suppose AM · B̃M 6= 0 and |NM/AM | < 1.

Then, by (6),

∣∣ B̃M

AM
− ωMℓ

∣∣ =
∣∣NM

AM

∣∣ < 1. (7)

But ωM = −1, hence ωMℓ = (−1)ℓ = (−1)ℓ mod 2. Thus

in (7), |B̃M/AM − (−1)ℓ mod 2| < 1. In geometric terms

this means that B̃M/AM lies within the unit circle around

(−1)ℓ mod 2. As the two open unit disks around +1 and −1

are disjoint, the real part of B̃M/AM decides on the parity

of ℓ: if Re(B̃M/AM ) > 0, i.e., B̃M/AM is within the green

area in Figure 3, then ℓ mod 2 = 0. If Re(B̃M/AM ) < 0,

i.e., B̃M/AM is within the red area, then ℓ mod 2 = 1. It

remains to note that AM · B̃M 6= 0 implies B̃M/AM 6= 0.

Define ℓm := ℓ mod 2m. We have illustrated above how

to compute ℓ1 = ℓ mod 2. Next we iterate this process and

compute ℓm with the help of ℓm−1. Keeping the binary rep-

resentation ℓ =
∑

i bi2
i in mind it follows that ℓm = ℓm−1 +

bm−1 · 2
m−1. Thus ℓm = ℓm−1 or ℓm = ℓm−1 + 2m−1.

−1 1

Fig. 3. Computing the least significant bit of ℓ.

Theorem 5. Let N = 2n. Suppose Ak · B̃k 6= 0 and

|Nk/Ak| < 1, for all k = 2m, m ∈ [1, n− 1].

(a) If k = N/2 and p ∈ {0, 1} minimizes |B̃k/Ak − (−1)p|,
then ℓ mod 2 = p, i.e., ℓ1 = p.

(b) Suppose, we already know that ℓm−1 = q, for some

m ∈ [2, n]. If k = N/2m and r ∈ {q, q + 2m−1} minimizes

|B̃k/Ak − ωkr|, then ℓm = r.

Proof. (a) See above. (b) If k = N/2m, then ωk =
exp(2πi/2m) is a primitive 2m-th root of unity and (6) yields

|B̃k/Ak−ωkℓ| = |B̃k/Ak−ωk·(ℓ mod 2m)| = |Nk/Ak| < 1.

By assumption, we already know that ℓm−1 = q. Hence ℓm ∈

{q, q + 2m−1}. But |ωkq − ωk(q+2m−1)| = |ωkq + ωkq| = 2.

Now a similar argument as in (a) shows that there is a unique

integer r ∈ {q, q + 2m−1} satisfying |B̃k/Ak − ωkr| =
|Nk/Ak| < 1. Thus ℓ mod 2m = r. �

Equivalent but simpler versions of the conditions in (a)

and (b) read as follows.

(a): ℓ1 =

{
0 if Re(B̃N/2/AN/2) > 0,

1 if Re(B̃N/2/AN/2) < 0,

(b): ℓm =

{
ℓm−1 if Re((B̃k/Ak) · ω

−kq) > 0,

ℓm−1 + 2m−1 if Re((B̃k/Ak) · ω
−kq) < 0,

where k = N/2m in (b). According to this result, the un-

known shift parameter ℓ can be correctly recovered if we

know Ak and B̃k for all proper divisors k of N , provided that

Ak · B̃k 6= 0 and |Nk/Ak| < 1.

Unfortunately, we don’t know |Nk/Ak|. Nevertheless, to

recover the unknown shift parameter ℓ, we check the positiv-

ity of the real parts of B̃k/Ak resp. (B̃k/Ak) · ω
−kq and if

so conclude – possibly erroneously – that ℓ1 = 0 resp. ℓm =
ℓm−1, otherwise, we put ℓ1 = 1 and ℓm = ℓm−1 + 2m−1,

respectively. To increase the reliability of this procedure, we

do this several times with noisy versions of a (!) and take the

median of the ℓ-estimates. There are complexity issues why

we work with noisy versions of a instead of using those of

b: as we know a, we can perform some of the required com-

putations with noisy versions of a in advance and this offline

work will not be part of our final complexity analysis. More

precisely, we produce P noisy versions a1, . . . ,aP of a and

calculate the Fourier coefficients Ap
2m (for m ∈ [1, n − 1]

and p ∈ [1, P ]) of these noisy versions. These P · logN fre-

quency values are stored. On input b̃, the Fourier coefficients
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B̃2m , m ∈ [1, n−1], can be computed all in all with less than

2N additions/subtractions and less than N multiplications us-

ing parts of a classical FFT-butterfly network. For each p ∈
[1, P ] we calculate the shift estimate ℓp with respect to the se-

quence of pairs of Fourier coefficients (Ap
2m , B̃2m)m∈[1,n−1]

using the simplified version of the conditions (a) and (b). It is

easy to see that the overall procedure uses less than 2N addi-

tions/subtractions, less than (N+2P · logN) multiplications,

and P · logN additional storage. Finally, we take the median

of ℓ1, . . . , ℓP as the estimate of the unknown shift parameter

ℓ. We call this procedure the P -median method.

Figure 4 shows for N = 212 the percentage of cor-

rect shift recovery if we use the P -median method for

P ∈ {5, 11, 17}. The Figure shows recognition rates de-

pending on the amount of uniform additive noise.
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Shift retrieval via median of noisy versions of reference signal: N = 4096,  # tries = 1000
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Fig. 4. Percentage of correct shift recovery for various levels

of uniform additive noise.

The following table compiles the computational cost of

the FFT approach with that of the P -median approach.

# additions # multiplications # comparisons

FFT 2N logN 0.5N logN −N N

P -median 2N N + 2P logN P logN

5. CONCLUSION

In this paper we have presented three contributions to com-

pressive shift retrieval. First, we have derived a general set-

ting for noise-free shift retrieval based on the Bézout iden-

tity. This setting allows us to simplify and extend previous

approaches to shift retrieval. Based on this general setting,

our second contribution is a novel method for compressive

shift retrieval for scenarios where the target signal is a mix-

ture of two differently shifted versions of a source signal. As a

third contribution, we proposed a novel iterative technique for

shift retrieval in noisy scenarios which is important for TDE

applications. We gave a detailed analysis of the running times

of the different methods and analyzed shift retrieval perfor-

mance in the presence of noise.
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