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Abstract – This paper presents a novel algorithm to
estimate the Angle of Arrival (AoA) in a dynamic indoor
Terahertz channel. In a realistic application, the user
equipment is often moved by the user during the data
transmission and the AoA must be estimated periodically,
such that the adaptive directional antenna can be adjusted
to realize a high antenna gain. The Bayesian filter is
applied to exploit continuity and smoothness of the channel
dynamics for the AoA estimation. Reinforcement learning
is introduced to adapt the prior transition probabilities
between system states, in order to fit the variation of
application scenarios and personal habits. The algorithm
is validated using the ray launching channel simulator and
realistic human movement models.

Index Terms – Terahertz communication, angle of ar-
rival estimation, dynamic channel, Bayesian filter, rein-
forcement learning

I. INTRODUCTION

Terahertz (THz) communication utilizes the frequency spec-

trum around 300 - 350 GHz and is expected to realize a

data rate of several tens of Gbit/s [1]. The semiconductor

technology advances and channel characterization works in

recent years have made THz communication a promising

solution for future high speed short range communications [1–

4], [5] (pp. 495-526).

One of the greatest challenges of THz communications is

the extremely high path loss due to the high carrier frequency.

In order to realize a reasonable received signal strength, a

high gain antenna can be used to compensate for the high path

loss. Since the high gain antenna is also highly directional, it is

crucial for the receiver to estimate the Angle of Arrival (AoA)

of the incoming signal in order to align the main lobe direction

for a high antenna gain. The AoA estimation is especially

difficult in a dynamic scenario, i.e. the user equipment is

moving during the data transmission. Therefore, the AoA is

time-variant and needs to be estimated periodically.

For a stationary scenario or a single snapshot of the dynamic

case, the AoA can be estimated with methods presented

in [6–8]. In the dynamic scenario, the Bayesian filter can

be applied to improve the estimation accuracy [9–14]. In

our previous works, [15] presents a Bayesian inference based

three dimensional AoA estimation algorithm for indoor THz

communications. Since the spherical coordinate system is not

linear, the system state cannot be represented as parameters

and their rate of change (this point will be explained later

in detail). Instead, we use the finite memory of parameters

to describe the AoA evolvement. In this algorithm, the prior

transition probabilities between system states are crucial to the

performance. In this paper, we further discuss the possibility

to obtain transition probabilities by means of reinforcement

learning.

The remaining part of this paper is organized as follows:

Section II describes the underlying channel and signal models.

Section III derives the Bayesian filter for the AoA estimation.

Section IV explains how to train the prior transition proba-

bilities using the reinforced learning. The simulation results

are presented in Section V. Section VI concludes the whole

paper.

II. CHANNEL AND SIGNAL MODELS

The THz channel is characterized by its high path loss

and specular spatial distribution (i.e. the propagation paths are

concentrated in several certain directions) [16]. While many

papers focus on the azimuth estimation alone and leave the

antenna pattern in the vertical direction omnidirectional, the

three dimensional AoA estimation can exploit the antenna

directivity in both azimuth and elevation directions and a

higher antenna gain can be expected. In this paper, we use path

loss, elevation and azimuth in the spherical coordinate system

to characterize one propagation path. The switched-beam

system [17] is assumed for a realizable hardware complexity,

which predefines discrete antenna main lobe directions rather

than continuous main lobe adjustment. If we assume that

the angle between 2 adjacent main lobe directions is 6◦, the

main lobe directions are distributed as Fig. 1 depicts, where

elevation θ = 0◦ is vertically upward whereas θ = 90◦ is the

horizontal direction.

It is to note that the spherical coordinate system is not

linear. For example, an azimuth difference of 30◦ results in

the biggest Euclidean distance if the elevation is horizontal

(θ = 90◦) while the Euclidean difference is 0 in the vertical

directions (θ = 0◦ or θ = 180◦). Therefore, the predefined

main lobe directions seem “denser” around the horizontal
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Fig. 1: Predefined antenna main lobe directions in the spherical

coordinate system

direction and “sparser” in the vertical directions although they

are actually uniformly distributed.

While many Bayesian filters apply the rate of change to the

Bayesian inference, it is impossible for the three dimensional

AoA estimation because of the nonlinearity of the spherical

coordinate system. In this paper, we use the finite memory

instead of the rate of change for the Bayesian inference. For

example, if we assume the optimal main lobe direction in time

instant t is 1 and in time instant t + 1 is 2 in Fig. 1, the

optimal main lobe direction in time instant t + 2 must be an

adjacent direction of 2 (i.e. the black and red dots in Fig. 1)

under the condition that the time between 2 time instants is

short enough, because the human movement speed is limited.

Furthermore, direction 3 should have a higher prior probability

than direction 4 because the movement 1 → 2 → 3 seems

more natural than the movement 1 → 2 → 4. We define a state
as the memory of optimal main lobe directions of length 2. In

every time instant, a new optimal main lobe direction updates

the state. For example, direction 3 updates state (1,2) to (2,3)

and direction 4 updates state (1,2) to (2,4) (left is early).

The transition probability is defined as the prior probability

between 2 states, e.g. p[(2, 3)|(1, 2)] is the probability of state

(2,3) given the previous state (1,2). In the next sections, we

will describe how to obtain the posterior probability of states

and directions using the Bayesian filter and how to obtain the

prior transition probability.

III. THE BAYESIAN FILTER

The Bayesian filter uses both previous estimates and current

measurement for the current estimation. For inference from the

previous estimate, if the optimal state at time instant i− 1 is

si−1, the probability that the optimal state at time instant i is

si, is the transition probability p(si|si−1).
For inference from the current measurement at time instant

i, we let the antenna main lobe direction scan over all prede-

fined direction in Fig. 1 and record the received signal power

zi. For a proposed THz communication system, the SNR is

expected significantly higher than 0 dB [18]. Therefore, if a

high received power is detected in a certain direction, it is safe

to assume that it is due to the signal power rather than thermal

noise and the probability that this main lobe direction is an

optimal direction is proportional to its received power. If this

direction is the current direction of a state si, we also assume

that the probability of the state is proportional to the received

power. The probability p(si|zi) is denoted as the likelihood.

We denote the received powers from time instant 1 to i
as a vector z1:i, where the subscripts indicate the first and

last time instants, and define the posterior probability αi =
p(z1:i, si) as the probability of a certain state at time instant

i and the received powers from the first to the current time

instant. According to the forward algorithm, we have

αi =p(z1:i, si)
=p(z1:i−1, zi, si)

=
∑

si−1

p(z1:i−1, zi, si−1, si)

=
∑

si−1

p(si, zi|z1:i−1, si−1)p(z1:i−1, si−1)

=
∑

si−1

p(si, zi|si−1)p(z1:i−1, si−1)

=
∑

si−1

p(zi|si)p(si|si−1)αi−1

(1)

where αi is the posterior probability at time instant i, p(zi|si)
is the likelihood, p(si|si−1) is the transition probability and

αi−1 is the posterior probability at time instant i− 1.

The inference can be illustrated in Fig. 2. If both likelihood

and transition probability are high, the state transition is likely

to take place. The total posterior probability of a state is the

sum of the probabilities from all possible previous states.
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Fig. 2: Illustration of state transitions

In this way, we can iteratively estimate the AoA along time.

By the initialization, the posterior probability α1 can be set

uniformly distributed for all states.

Another important point is, the estimation interval between

2 time instants must be small enough to restrict the AoA

change within the resolution of the predefined main lobe

directions. If we assume the access point is stationary, which
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is usually this case, the AoA change is the result of both dis-

placement and rotation of the user equipment. The estimation

interval must be determined this way, that even if the user

equipment is displacing and rotating at its maximum speed

and the effects of displacement and rotation are constructively

overlapped, the AoA change can still be restricted within the

resolution of the predefined main lobe directions. According

to our measurement, we set the estimation interval to 0.04 s.

IV. TRAINING OF TRANSITION PROBABILITIES BY

REINFORCEMENT LEARNING

Section III describes the algorithm to estimate the current

AoA from both current measurement and previous estimates,

leaving the important problem of obtaining the transition

probability unsolved. We can either carry out a training before

the application, or update the transition probabilities accord-

ing to the feedbacks during the application. Reinforcement

learning [19] is a promising solution for this concept. We

assume that only an accurate AoA estimate can provide a

reasonable SNR and therefore this is the necessary condition

for the successful decoding of the transmitted data (note

that it is not a sufficient condition because the successful

decoding also depends on other factors, e.g. AoD estimate

of the transmitter, phase noise of the local oscillator and IQ-

imbalance). Therefore, the error-detection test (e.g. using the

cyclic redundancy check) after the forward error correction

can provide the information whether the AoA estimation is

correct or unknown. In this paper, we assume a memory length

of 2. If the AoA estimates in 3 continuous time instants are

correct, a successful state transition has taken place, the state

transition probability between these 2 states shall be increased

as a reward. The updated transition probability shall be used

for the future estimation, until the transition probabilities

are optimized for the current application scenario. Fig. 3

demonstrates this idea.
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Fig. 3: Reinforcement learning flow chart

The transition probability p(si+1|si) is calculated as

p(si+1|si) = n(si+1|si)
n(si)

(2)

where n(si+1|si) is the number of successful estimates that

the previous state is si and the current state is si+1 and n(si)
is the number of successful estimates that the previous state

is si. The former will increase by one after 3 successive

precise estimates whereas the latter will increase by one after

2 successive precise estimates.

V. SIMULATION RESULTS

In this section, we demonstrate the effect of the reinforce-

ment learning with the Bayesian filter by means of simulations.

A ray tracing simulator [20] is applied to generate channel

models for the simulation. The scenario is a small office, as

shown in Fig. 4. The access point is in the middle of the room

and under the roof, as depicted with the red point. The user

Fig. 4: The office scenario

is moving according to a realistic movement model [15]. The

transmission power is assumed as 1 mW. The bandwidth is

50 GHz (300 - 350 GHz). In order to simplify the problem

without loss of generality, the antenna gain of the access point

is assumed to be constantly 5 dB as a conservative assumption

and the antenna of the user equipment is assumed to have a

Gaussian antenna diagram [21] with a half power beam width

of 12◦ (such that 2 adjacent main lobe directions realize an

antenna gain difference of 3 dB) and a maximum antenna gain

of 23.3 dB.

At the initialization, we allocate the same transition prob-

ability to all the possible state transitions. The transition

probabilities are updated according to the principle in Fig. 3

after every time instant. We first consider the cumulative

distribution function (CDF) of the estimate errors. Fig. 5

shows the estimate error CDF after 2000 and 80000 time

instants. As expected, the estimate errors with reinforcement

learning are smaller than without reinforcement learning and

the improvement with 80000 training steps is bigger than with

2000 training steps. Since the resolution of the predefined main

lobe directions is 6◦, we consider an estimate with an error less

than 6◦ to be correct. We can observe that the probability of a

correct estimate with reinforcement learning after 80000 steps
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is 0.78 while the probability without reinforcement learning is

merely 0.61.

(a) After 2000 time instants
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Fig. 5: Cumulative distributions of estimation errors

The effective antenna gain is defined as the antenna gain in

the direction of the true AoA when the antenna main lobe is

pointing at the estimated optimal main lobe. A precise estimate

can realize a high SNR and a very low effective antenna gain

will be realized and the THz connection will be broken if

the estimate error is big, which results in serious performance

degradation due to the time required for the reconnection

and synchronization. Fig. 6 shows the effective antenna gain

with and without reinforcement learning after 80000 time

instants. It can be observed that the effective antenna gain

with reinforcement learning is not only higher but also more

stable than without reinforcement learning, which indicates

that reinforcement learning can improve the signal quality and

the system stability.

We use the level crossing rate (LCR) to evaluate the stability

of the effective antenna gain in a more general sense. The LCR

is defined as the number of times that the effective antenna

gain is below a certain threshold per second. Fig. 7 depicts

Fig. 6: Realized antenna gain after 80000 time instants

the LCR at different thresholds. If we want that the effective

antenna gain is higher than 15 dB, we can realize an LCR of

1.75 s−1 whereas the LCR is increased to 3.67 s−1 without re-

inforcement learning. These results validate the reinforcement

learning as a measure to be adapted to the application scenario

in order to improve the system performance and stability.

Fig. 7: Level crossing rate after 80000 time instants

VI. CONCLUSION

This paper introduces a Bayesian filter for the angle of

arrival estimation in a dynamic indoor THz wireless channel,

where the user equipment is moving during the data transmis-

sion and the angle of arrival must be estimated periodically.

The Bayesian filter combines the prior probability from the

previous estimates and the likelihood from the current mea-

surement to obtain the posterior probability. The transition

probability plays a crucial role in the prior probability cal-

culation, which depends on the application scenario and user

habit. The reinforcement learning is applied to optimize the

state transition probabilities from the feedbacks of the previous

estimates and hence improves the algorithm performance. We

use a ray tracing simulator and a realistic human movement
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model to generate a series of channel models for validation

of the algorithm. The simulation results show that the rein-

forcement learning can improve the algorithm performance

significantly in both effective antenna gain and its stability.

Therefore, a more stable THz link can be ensured during the

user equipment movement.
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