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ABSTRACT

Traditional active noise control (ANC) systems, which uses
a fixed tap length adaptive filter as the controller may lead to
non optimal noise mitigation. In addition, the conventional
filtered-x least mean square algorithm based ANC schemes
fail to effectively perform noise cancellation in the presence
of nonlinearities in the ANC environment. In order to over-
come these limitations of traditional ANC techniques, in this
paper, we propose a class of dynamic nonlinear ANC systems,
which adapts itself to the noise cancellation scenario. The dy-
namic behaviour has been achieved by developing a variable
tap length and variable learning rate adaptive algorithms for
functional link artificial neural network (FLANN) and gen-
eralized FLANN (GFLANN) based ANC systems. The pro-
posed ANC schemes have been shown through a simulation
study to provide an optimal convergence behaviour. This im-
provement has been achieved by providing a balance between
the number of filter coefficients and the mean square error.

Index Terms— Active noise control, functional link arti-
ficial neural network, GFLANN.

1. INTRODUCTION

Active noise control (ANC), which is based on the destructive
superposition principle, has gained considerable attention in
the recent past in comparison with traditional passive noise
mitigation techniques, when applied for low frequency noise
cancellation. The basic single channel feed-forward ANC
system consists of a reference microphone which senses the
noise to be cancelled, a loudspeaker which generates the anti-
noise and an error microphone which measures the level of
noise cancellation achieved. The anti-noise generated by the
loudspeaker is governed using an adaptive controller, which is
conventionally an adaptive filter trained using a suitable learn-
ing algorithm. The filtered-x least mean square (FXLMS) al-
gorithm is the most common adaptive algorithm employed in
an ANC system. FxLMS algorithm is used when the con-
troller is a finite impulse response (FIR) filter [1].
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The conventional FXLMS algorithm based ANC systems
have been designed to mitigate noise assuming a linear ANC
scenario. In a practical ANC system, nonlinearities exist at
different stages including the secondary and primary paths.
FxLMS algorithm based ANC systems fail to effectively
tackle noise in those scenarios and a few nonlinear ANC sys-
tems have been designed in the recent past to overcome this
limitation. Das and Panda [2] has reported a functional link
artificial neural network (FLANN) based ANC system, which
uses a filtered-s least mean square (FSLMS) algorithm as the
learning rule. Recently, a generalized FLANN (GFLANN)
filter has been employed for nonlinear ANC [3]. Variants
of these nonlinear ANC schemes, including convex combi-
nation of FLANN and Volterra filters have been attempted
lately to improve the noise mitigation capability of the ANC
system [4].

In all the ANC scenarios discussed so far, the length of
the adaptive controller needs to be fixed aprori and the con-
troller length is a critical parameter that can determine the ef-
fectiveness of the ANC system. Selecting a controller length
which is smaller than optimal will result in an underestima-
tion scenario and will lead to ineffective noise cancellation.
On the other hand, selecting a longer controller length will
lead to an ANC situation which has slow convergence and can
significantly increase the computational load. In an endeav-
our to avoid the above discussed limitations of ANC systems,
this paper proposes a class of variable tap/coefficient length
adaptive algorithms for nonlinear ANC. The proposed ANC
schemes are designed to adapt the tap length of linear-in-the
parameters nonlinear filters according to the ANC scenario to
which the controller is applied and thus can provide optimal
noise cancellation.

A few works have been reported in the literature on vari-
able tap length schemes for adaptive filters. A segmented fil-
ter (SF) approach has been presented in [5], where in the filter
length is increased or decreased by one segment based on an
error norm before and after the tap length change. A gradi-
ent descent (GD) variable tap length scheme, in which the tap
length is updated in a smooth manner has been reported in [6].
One of the most prominent disadvantage of the GD approach
is that the filter length may be considered to be more than the
optimal tap length [7]. By introducing the concept of pseudo



2016 24th European Signal Processing Conference (EUSIPCO)

fractional tap length, this limitation of the GD approach has
been solved in [7], resulting in a fractional tap (FT) algorithm.
The FT algorithm is computationally efficient and has been
shown to provide improved convergence in comparison with
other popular variable tap length approaches.

A variable tap-length and variable step-size algorithm for
an FxXLMS based ANC system has been recently reported
[8]. As discussed previously, FXLMS algorithm is not effec-
tive under nonlinear ANC situations, which are frequently en-
countered in practical implementations. In contrast to a vari-
able tap length algorithm in a linear ANC system, a change in
tap length will affect the length of the controller in a different
fashion in nonlinear ANC schemes, depending upon the na-
ture of the nonlinear controller employed. In order to achieve
the dynamic behaviour in a nonlinear ANC system, this pa-
per proposes a class of nonlinear ANC algorithms, which can
adapt the structure of the controller as well as its weights in
accordance with the noise control situation. This dynamic na-
ture of the proposed schemes have been further enhanced by
introducing the concept of variable learning rates in nonlin-
ear ANC systems. In this paper, we have considered FLANN
and GFLANN as the candidates for the nonlinear controllers
and the corresponding variable tap/coefficient length, variable
learning rate update rules have been developed.

The rest of the paper is organized as follows. A set of
variable coefficient length nonlinear ANC schemes, which
are based on popular nonlinear controllers like FLANN and
GFLANN are designed in Section 2. An extensive simulation
study has been carried out to understand the behaviour of the
new techniques in Section 3 and the concluding remarks are
made in Section 4.

2. DESIGN OF DYNAMIC NONLINEAR ANC
SYSTEMS

A class of dynamic nonlinear ANC systems, which are based
on popular nonlinear controller structures employed in ANC
scenarios are designed in this section. Most of the nonlinear
active noise controllers consist of a linear as well as a nonlin-
ear sub-block, the weights of which are updated using a suit-
able gradient descent algorithm. In addition to the weights,
the number of coefficients as well as the learning rates are
considered as variables in this study. The two controllers con-
sidered in this work are the ones based on FLANN [9] and
GFLANN.

2.1. FLANN based ANC

In the proposed FLANN based variable tap-length, variable
learning rate ANC scheme, the tap delayed input signal vec-
toru(n) = [x(n),z(n—1), -, z(n—L(n)+1)]T of variable
length L(n) is functionally expanded to A(n) = L(n)(2P +
1) terms, where P is the order of the functional expansion
and A(n) is the steady state coefficient count after functional
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expansion. Even though several functional expansion mech-
anisms have been reported in the literature [2, 3], a trigono-
metric expansion is considered in this paper. The functionally
expanded reference signal vector is given by

XA(n)(n) = {x(n),x(n - 1)7 e ,x(n - L(n) + 1)7

sin[rz(n)], sin[rx(n — 1)],- -, sin[rz(n — L(n) + 1)],
-+« sin[Prxz(n)], - - -, sin[Pra(n — L(n) + 1)], cos[rz(n)],
cos[rz(n — 1)],---,cos[rz(n — L(n) + 1)], cos[Prz(n)],

cos[Pra(n — 1)],- - -, cos[Prx(n — L(n) + D]}T (1)

The segmented steady state residual noise is given by

Ay d(n)—sN(n)*(Xg(n)WA(n)) )

CA(n)
where d(n) is the primary noise signal observed at the can-
cellation point, Sy (n) is the impulse response of the sec-
ondary path, * represents the linear convolution operation
and Wj,) = ['ng(n)(n),sz(TL)(n),wZL(n)(n)]T rep-
resents the weight vector with wy, 1,,)(n), W, 1(n)(n) and
w,, 1,(n)(n) denoting the weights corresponding to the linear,
sine terms and the cosine terms respectively. It is convenient
to represent the weight vector Wy (,,) as a vector of weights
corresponding to the linear (Wp, 1(,)(n)) and nonlinear
(WN,L(n) (n)) parts. i.e. WA(n) = [WLT,L(n) (n)v W]z;L(n) (n)]T
Weights of the controller are updated using

A(n

Wiy (n) = Wag (n— 1) + p(n) Xy (n)er () (n) 3)
which is here after called the variable coefficient variable
learning rate FsSLMS (VCLFsSLMS) algorithm. In (3), X/’\(n) (n)
is X5 (n)(n) filtered through a model of the secondary path
and the learning rate pt(n) is a diagonal matrix given by

_ |ue(n) 0
p(n) = [ 0 .UN(n):|A(n)><A(").

with pr,(n) and py(n) denoting the learning rates corre-
sponding to the linear and nonlinear blocks. As the tap length
L(n) as well as the number of coefficients A(n) are restricted
to be natural numbers, the update of both the terms cannot
be achieved using a gradient descent approach. In order to
achieve this task, we have used a pseudo fractional tap-length
approach [7]. The fractional tap length [ ;(n) is updated as

L(n+1) = [Iy(n) —a] = B{{eq () ()] = [e20m (M)]2} (5)

with Z(n) as the length of the expanded vector for a tap length
of L(n) — A, where 1 < A < L(n) is a positive integer.
In (5), « is a positive leakage factor, 3 is the step-size with
0 < a < f as the condition for ensuring stability of the
update algorithm [6-8]. The update rule for the tap length
L(n) may be written as

Ls(n)],
L(n),

4)

if |L(n) — L;(n)|>
otherwise

Lin+1)= { (6)
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Fig. 1. Schematic diagram of the proposed variable coefficient
length variable learning rate nonlinear ANC system.

where |-] is the floor operator and ¢ is a small integer.
Fig. 1 shows the schematic diagram of the proposed ANC
scheme. It may be noted that the change in coefficient count
is achieved by padding or truncating R taps to the linear, sine
and cosine blocks, where R = |L(n + 1) — L(n)|.

2.2. GFLANN based ANC

One of the recently proposed nonlinear controller for ANC
is a generalized FLANN (GFLANN), which contains cross
terms in addition to the functionally expanded terms of a
trigonometric FLANN [3]. In the proposed variable tap
length variable learning rate GFLANN based ANC scheme,
the tap delayed input signal vector w(n) of length L(n) is
expanded to

Nd 1
L(n)2P+1)+2P > [L
k=0

A(n) = —1+k (D

terms, with P as the order of the functional expansion and Ny
as the cross term parameter as defined in [3]. Considering a
first order expansion, the expanded reference signal vector in
a GFLANN may be written as

ny(n) = {z(n),2(n = 1),- -, z(n = L(n) + 1),
s1n[7ra:(n)}, sin[m (n — 1), ,sin[rz(n — L(n) + 1)],
cos[rz(n)],cos[rz(n — 1)],- -, cos[rz(n — L(n) + 1)]

- z(n — L(n) 4+ 1)sin[rz(n — L(n)],
L(n)+1—Ny)], x(n—1)cos[rz(n)],- - -,
L(n) + 1)cos[rz(n — L(n))], -, z(n — Ng)
cos[rz(n — L(n) + 1 — Ng)|}T, (8)

z(n — 1)sin[rz(n)], -
x(n—Ngy)sin[rz(n—
(

x(n —
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which may also be written as
Xam) () = (X7 1y Xnz0ny XeomlT )

where X7, 1.(n), Xn,r(n) and X 1(n) represents the linear,
nonlinear and cross terms of X (,,)(n) in (8). The weight
vector Wi (n) = [W[ | . W§7L(n) W 1) " is updated
using the proposed variable coefficient variable learning rate
generalized FSLMS (VCLGFsLMS) algorithm, which is sim-
ilar to the update rule given in (3), with

pn(n) 0 (10)

pr(n) 0 0
0
0 0 pc(n) A(n)xA(n)
where pr(n), py(n) and pe(n) are the variable learning
rates for the linear, nonlinear and the cross terms respectively.
In order to incorporate variable step size into the proposed
ANC schemes, we divide the total segmented residual noise
signal e Agng( ) into two parts, one due to the contribution of
the linear section of the controller and the other because of

the nonlinear portion. The error signal may be written as

exmn) = er(n)+en(n) (1)
er(n) = exm(n)+Sn(n)ryn(n)  (12)
en(n) = eymn) —ep(n). (13)

The separation of the error signal has also been shown in
the schematic diagram of the ANC scheme shown in Fig. 1,
where yx (n) is the output from nonlinear part of controller.
Using a variable learning rate approach [8], the learning rate
for the linear block of the nonlinear controller may be updated
as

/J/L(n) = pL(n)/J/Lmaw + [1 - PL(”)}/Jme (14)

where UL mar = HZ with 0 < 47 < 1 as a constant and

HX/
Wimin = CLibLmaz With 0 < (1, < 0.2 as another constant.
In (14), pr.(n) is a weighting factor, with 0 < pz(n) < 1 and

is given by

- Aey (n) — Aep min (n)
Pr (n) B AeL,ma:c (Tl) - AeL,min (TL) (15)
where
1 n
Aey(n) = > ei(k) (16)

k=n—-T+1
with T as the averaging constant, which has been taken as 100
in this study. Ae, min(n) and A, mar(n) are the minimum
and maximum average powers of er,(n), computed using the
average of the first and last 50 samples of A., (n). Similarly,
the learning rate for the nonlinear portion, py(n) is updated
as

pn(n) =N () pNmaz + [1 — I8 ()] i Nmin (17)
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Fig. 2. Case A: The variation of (a) MSE, (b) A, and (c)
with respect to iterations for a the algorithms compared for
FLANN based ANC system, considering a uniformly dis-
tributed random signal as the primary noise x(n).

with ny(n) as the weighting factor. In (17) pnmas and
U Nmin are the maximum and the minimum possible values
of the learning rates, which have been computed earlier in
this section. A similar approach has been used for updating
the cross terms in GFLANN.

3. SIMULATION STUDY

In an endeavour to evaluate the performance of the proposed
ANC mechanisms, a set of simulation studies have been car-
ried out in a MATLAB environment. The mean square error
(MSE), defined by £ = 10log,, {E [e*(n)]} has been em-
ployed in this study as the metric for comparison, where E|-]
is the expectation operation. A measurement noise, with a
signal to noise ratio of 30 dB has been used and we have as-
sumed perfect modeling of the secondary path (even in cases
where the secondary path changes) in this study. The primary
noise, at the cancellation point is given by

d(n) = u(n — 2) + 0.08u*(n — 2) — 0.04u(n — 1), (18)

in all the experiments. In (18), u(n) = x(n) * ¢(n) with
q(n) as the impulse response of the transfer function Q(z) =
273 —0.327* 4+ 0.227° and * denotes the linear convolution
operator [2]. In all the variable tap-length scenarios the initial
tap-length L(0) = A+6 =2+1 =3, = 0.001 and 5 = 0.2
has been considered. A non-minimum phase secondary path,
with a transfer function given by Sn1(z) = 272 + 1.5273 —
2%, has been considered for the first 4000 samples of each
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Fig. 3. Case B: The variation of (a) MSE, (b) A, and (¢) p
with respect to iterations for a the algorithms compared for a
GFLANN based ANC system, considering a uniformly dis-
tributed random signal as the primary noise z(n).

experiment and a minimum phase secondary path given by
Sna(z) = 272+ 0.5273 has been assumed for the rest of the
samples. All the graphs plotted in this section are an average
of 50 independent iterations.

3.1. Case A: FLANN based ANC

The primary noise employed is a random signal, which has
been uniformly distributed within the range [—0.5,0.5]. The
noise cancellation obtained using the proposed VCLFSLMS
algorithm has been compared with the results obtained using
the conventional FSLMS algorithm as well as a variable coef-
ficient FSLMS (VCFsLMS) algorithm. VCFsLMS algorithm
has been designed by considering a fixed value for the learn-
ing rate matrix in (3). A comparison has also been made with
the noise mitigation achieved using a variable coefficient nor-
malized FsSLMS (VCFsNLMS) algorithm. In a VCFsNLMS,
the learning rates for the linear as well as the non-linear por-
tions are given by ur(n) = H;W and py(n) = H)?#
where k7, and x are constants. The variation of MSE with
respect to iterations in this case is shown in Fig. 2 (a). The
improved convergence behaviour of the proposed algorithms
over FSLMS algorithm is clear from the simulation results.
The change in the number of coefficients (A) as well as the
learning rate () for all the situations considered has also been
shown in the Fig. 2 for better understanding of the algorithm
behaviour. The various parameters used in the experiment
for the different algorithms are: FSLMS (P = 1, Tap length
=5 ur = 2x 1072 and uxy = 5 x 1072), VCFsLMS
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Table 1. Comparison of Number of Coefficients and MSE for
ANC with input as uniform random noise

Number of
Coefficients MSE (dB)
Secondary Path [ Sni(z) [ Sn2(z) | Snvi(2) | Swa(2)
ANC Schemes
FsLMS 15 15 -23.22 -16.25
VCFsLMS 15 24 -22.98 -27.48
VCFsNLMS 15 24 -23.33 -28.14
VCLFsLMS 15 24 -22.97 -28.25
GFsLMS 29 29 -23.95 -16.65
VCGFsLMS 29 50 -23.71 -28.58
VCGFsNLMS 29 50 -23.85 -29.25
VCLGFsLMS 29 50 -23.76 -29.18

(P=1,ur =4x10"2and uxy = 8 x 1073), VCFsNLMS
(P=1,k, =1x10"2and ky =5 x 1073), VCLFLMS
(P=1,v,=2x10"2 7, =1x1073, vy =1 x 1072,
ny = 5 x 107%). Number of coefficients that needs to be
updated in each iteration and the corresponding steady state
MSE (dB) is shown in Table 1. The ability of the proposed
variable tap as well as variable learning rate ANC algorithms,
to adapt to the changing ANC scenarios is evident from the
experiment.

3.2. Case B: GFLANN based ANC

We have designed a VCLGFsLMS algorithm for updating the
coefficients of a GFLANN in a dynamic manner. The conver-
gence characteristics obtained has been compared with that
obtained using a variable coefficient normalized GFsLMS
(VCGFsNLMS) algorithm and a variable coefficient GF-
sLMS (VCGFsLMS) algorithm in addition to the GFSLMS
algorithm proposed in [3]. The variation of MSE as well as
other parameters with respect to iterations is shown in Fig. 3
for an uniformly distributed 2:(n). The improved and dynamic
nature of the proposed algorithms can be seen from the sim-
ulation results. The parameters considered for the GFLANN
based experiment using a filter order P = 1 and Ny = 2 are:
GFsLMS (Tap length = 5, up, = 1 x 1072, uy = 5 x 1073
and uc = 2 x 1072), VCGFSLMS (u;, = 3 x 1072,
uy = 5 x 1072 and pc = 2 x 1073), VCGFsNLMS
(kp = 2x 1072, ky = 1 x 1072 and ke = 5 x 10793),
VCLGFsSLMS (v, = 5 x 1072, = 1 x 1073, vy =
1x1072,ny =1x1073,7¢ =5x 1073, nc = 1 x 107%).
Fig. 3 (b) and (c) shows the learning curve of tap-lengths and
step sizes (pr,, pn and pc) respectively for uniform random
noise.

4. CONCLUSION

This paper developed a class of nonlinear ANC schemes,
which can adapt the filter weights as well as the structure
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of the nonlinear controller in a dynamic manner, depend-
ing on the ANC scenario. This dynamic behaviour has been
achieved by designing variable coefficient length and variable
learning rate adaptive algorithms for nonlinear ANC. The
proposed schemes have been shown to effectively mitigate
noise with optimal resources in comparison with traditional
nonlinear ANC methods.
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