
SPEEDING UP EXECUTION TIME OF A SMART WHEELCHAIR COMMAND TECHNIQUE
USING PARALLEL COMPUTING

Agnès Ghorbel, Mohamed Jallouli and Nader Ben Amor

Computer and Embedded Systems: CES Laboratory
ENIS, Université de Sfax, Tunisie.

ABSTRACT

An Human Machine Interface for wheelchair control based on
facial expressions is presented. The interface is implemented
on embedded system architecture based on ARM processor
rather than personal computer, like usual wheelchair com-
mand implementation, to reduce energy consumption while
maintaining similar computing performance. The command
technique code is complex but offers inherent parallelism. To
reduce processing time, two parallelism levels are exploited.
The first one is instruction parallelism which is applied to a
dual core architecture using OpenMP directives. The second
level is data parallelism in which an SIMD specific unit is ex-
ploited. In both parallelization techniques, a minimum of ini-
tial code re-manipulation is required. As processing unit, we
choose the Pandaboard-ES platform that includes a dual-core
ARM9 and a set of control interfaces. The obtained prelimi-
nary experiments demonstrate the effectiveness of this paral-
lelization and conduct to a 40% reduction of processing time
against a conventional x86 CPU.

Index Terms— HMI, embedded system, dual-core, par-
allelism.

1. INTRODUCTION

The deployment of Electric Powered Wheelchairs (EPWs)
has been increased rapidly for better quality of life for handi-
capped and elderly people over the last 20 years [1]. However,
as many disabled people have problems handling current as-
sistive robots and rehabilitation devices that use traditional
manual command such as joystick and/or keyboard, a need
of more advanced hands-free HMI is required. Wherefore,
alternative HMI methods for wheelchair operation have been
studied like head gesture [2], voice recognition [3], tongue
movement [4] and biopotential signals interface [5, 6]. Bio-
potential signals such as Electrooculargraphic (EOG), elec-
tromyographic (EMG) and electroencephalographic (EEG)
are also deployed to control such kind of smart service
robot [7–9]. In the wheelchairs field,,to ameliorate the mo-
bility,of disabled,persons, a need for,systems that ensure
users safe driving conditions with a fast response (notably in
dangerous situations) is required. For this purpose, two con-

ditions must be met: 1) the use of an optimized and efficient
control algorithm and 2) the use of a very high performance
computing units. The existing implementation of EPW com-
mand mostly relied on Personal Computer (PC) platform or
on embedded platform. Many of researchers implement their
wheelchair command techniques on PC [2, 7] since it can ad-
equately process complex and richness HMI applications and
provide an easy programming framework. While, despite the
continuous improvement of semi-conductor technology and
complex computation resources (DSP, FPGA, multicors ar-
chitecture), the relevant studies focusing on embedded imple-
mentations of wheelchair command are too simple. In [3,10],
the microprocessors and DSP are used to carry out wheelchair
control operations. But the major drawbacks of such these
architectures are: the lack of design portability and some-
times the necessity to add one CPU to the DSP (graphical
interface, OS support...). In [11, 12], the author proposed an
FPGA realization of wheelchair command based respectively
on EEG signals and Fuzzy Logic Controller. However, the
design of a FPGA is very complex since it requires custom
complex hardware accelerators.

In the literature and in our knowledges, few studies ad-
dress the problem of executing complex control techniques
of smart wheelchair on embedded systems. In this paper,
we present a complex command technique, based on im-
age processing algorithms, developed on embedded target
since PC has a lack of autonomy and consumes more energy.
Moreover, image processing algorithms require complex
data,processing across,complex environments. Signal/Image
processing applications have different parallelism types like
data and thread parallelism. An application is generally
composed of multiple tasks which may be simultaneously
performed on different cores. Consequently, it is worthwhile
to explore software optimizations and parallelism that can
be easily implemented on popular and low cost embedded
multi-processor platforms like Zynq, Tegra 2, etc. Our con-
tribution thus is twofold: 1) we propose a novel HMI for
people with hands impairments based on human face. Human
face has a large range,of facial expressions (emotion, gaze
tracking,,mouth movements, eye movements, etc.) that can
be conceivably used,for people interacting,with a computer.
This intelligent module developed for the autonomous guid-

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 1611

ance of the chair to improve the mobility and guarantee a
safe functioning relies on determining the orientation of the
face and the eye blinks using image processing algorithms.
2) we implement this algorithm on an embedded multi-core
architecture based on SoC design with moderate consump-
tion of electrical energy by exploiting both instruction-level
parallelism and data-level parallelism to reduce processing
time.

The reminder of this paper is organized as follows. Sec-
tion 2 explains the concept of the HMI used to interact with
the handicapped and details about the software implementa-
tion are presented in section 3. In sections 4 and 5, we present
the HMI parallelization techniques. Section 6 reports the ex-
perimental results, which were obtained from implementing
the proposed algorithm on the target multiprocessor architec-
ture. Finally, section 7 draws some conclusions.

2. HUMAN MACHINE INTERFACE

This paper proposes a bi-modal HMI for hands-free control
of an EPW by using face and eyes. The human machine in-
terface is in charge for reading characteristics, classifying se-
lected,face and eyes movements,and mapping the classified
movement patterns into four wheelchair control commands:
”GO”, ”Turn Right”, ”Turn Left” and ”Stop”, that emulates
the four direction of the joystick control. The user is sitting
in front of the camera which is equipped with a light source
to make the detection robust and effective in real environment
(illuminations and crowded problems). Figure 1 describes the
process to recognize user’s intention.

Fig. 1. Process to recognize user’s intention.

The process is conducted in three steps: detection, recog-
nition system and conversion. More details about the process
are presented in [13]. The proposed system can differentiate

between the voluntary and involuntary behaviour to preclude
potential accidents, when the user naturally rotates his head
to look around during the navigation process. In addition, the
suggested mechanism demands a minimal motion from the
user, which makes it more convenient and suitable for persons
with severe disabilities compared to conventional methods.

3. SOFTWARE IMPLEMENTATION DETAILS

Face and eyes detections are the significant steps for our com-
mand algorithm: determination of face inclination and eyes
blinks. The detection algorithms are performed based on the
Viola-Jones procedure [14].

3.1. Viola and Jones algorithm

Figure 2 demonstrates the viola and Jones principle.

Fig. 2. Viola and Jones procedure.

The image is initially loaded, gray-scaled and scanned
with a sub window. In each sub window within the image, a
cascade classifier is running to detect the presence of face/eye
or not. This procedure is repeated for different image scales
until the sub window size surpasses the scaled image size.

3.2. Implementation using OpenCV Library

The software prototype was developed in C++ using OpenCV
Library [15]. Figure 3 presents the call graph of the whole
algorithm where different functions are called.

Fig. 3. The call graph.

23rd European Signal Processing Conference (EUSIPCO)

1612

As shown in Fig. 3, the bulk of the algorithm is based on
detectMultiScale () function in the CascadeClassifier class in
the objdetect module of OpenCV. This function was called
twice (”x” means the call number of the functions in the
whole algorithm): one for face detection which use Local
Binary Patterns (LBP) cascade classifiers and the other for
eyes detection which use HAAR cascade classifiers.

For face detection, in a loop which scales the image sev-
eral times by the growing factor, the detectSingleScale() func-
tion is invoked on the scaled image. This function scans all
areas in the image and performs the cascaded classifiers on
each possible sub-window. Once all faces were found, the
groupRectangles() function was invoked to group all similar
face rectangles found.

For eyes detection, all detection stuff is done within
cvHaardetectobjectsForROC () function which can be found
in Haar class in objdetect module of OpenCV. In this func-
tion, a loop that computes the re-scaled versions of the origi-
nal image with a re-size factor is done. Within this loop, the
HaarDetectObjects ScaleImage Invoker () is called to start
the eye detection. After detection on all scales has been done,
a grouping of similar rectangles (groupRectangles() function)
starts to fuse the multiple detections.

4. OVERVIEW OF MULTIPROCESSOR
ARCHITECTURE

Parallel computing and multi-core architectures became es-
sential to attaining great performance in actual and future
computing systems. The parallel memory architecture tar-
geted in this work is a Symmetric Multi-Processing (SMP)
architecture. SMP implies multiprocessor hardware descrip-
tion in which two or more identical CPU are linked to a
single shared memory and are controlled by a single oper-
ating system (OS) instance which deals with all processors
equally.

In parallel programming, the easiest way to implement
a parallel application is exploiting multithreading. It’s still
more gratifying to note that nearly all programming libraries,
that habitually offer multithreading facilities, give a mech-
anism to automatically run multiple threads in different
processors. Three user friendly programming models are
available nowadays: POSIX threads (Pthreads), Open Multi-
Processing (OpenMP) and the Threading Building Blocks
(TBB).

5. PARALLELIZATION OF THE WHEELCHAIR
HMI APPLICATION

To reduce processing time, two parallelism levels are ex-
ploited. The first one is instruction (threads) level parallelism
using a multi-threading library and the second level is data
parallelism in which an SIMD specific unit is exploited in the
target architecture.

To determine which parts of the code must be optimized
and parallelized, we have made a profiling of our algorithm.
Through profiling, supercomputing functions and instructions
within these functions which are usually performed can be
identified. Figure 4 illustrates the profiling results of a 640 ∗
480 image made on the Pandaboard-ES.

Fig. 4. The profiling results of a 640 ∗ 480 image resolution.

The obtained profiling results illustrate that there are two
great candidates functions for multi-threading optimization:
• For face detection: the detectMultiScale() and within it

detectSingleScale().

• For eyes detection: the detectMultiScale() and within it
cvHaardetectobjectsForROC() .

5.1. Instructions-level parallelism

5.1.1. Parallelizing the ”scanning” loop:

As mentioned before, the detectSingleScale() and HaarDetec-
tObjects ScaleImage Invoker () functions perform the sub-
windows scanning in the image. This parallelization was
possible since each sub-window in the image may be inde-
pendently treated by the classifier. Therefore, by creating
multiple copies of the classifier, it’s quite easy to parallelize
the scanning. In fact, each thread is allocated a set of sub-
windows of the same lines to treat. This procedure may be
regarded as embarrassingly parallel , since no shared memory
or conflicts happen between threads.

The parallel design architecture is shown in figure 5.

Fig. 5. The parallelization architecture in the scanning loop.

5.1.2. Parallelizing the ”factor” loop:

Parallelism may also be carried out on a coarser scale in de-
tectMultiScale() and cvHaardetectobjectForROC() functions
where the image resizing / scaling is performed. Most of the

23rd European Signal Processing Conference (EUSIPCO)

1613

code in these functions is in a wide loop that resizes, in each
iteration, the image by a designed factor. As there are no data
changed in the image and no data dependency for the calcula-
tions of different scaled images, a possible optimization is the
parallelization of the loop factor. A potential solution could
be a pool of threads with factors attributed to each thread.
Each thread should, thereby, resize/scale the image accord-
ing to its particular factor and transfer the image information
to corresponding functions to perform scaling. The growing-
factor is determined according to equation (1):

growing factor = growing factor ∗ scalefactor (1)

where the scalefactor is one of parameters defined in de-
tectMultiScale() and cvHaardetectobjectForROC() functions.

Figure 6 presents the distribution scheme, that assigns
each factor to a different thread as the factor increase.

Fig. 6. The parallelization architecture for the factor loop.

5.2. Data-level parallelism

In this level, with a single instruction at a given moment, the
CPU processes multiple data points simultaneously. This is
a way of getting the processor doing more work with fewer
instructions. Eventually this means that the program code is
increasingly compact and often functions faster.

Nearly all image processing algorithms utilize grayscale
images as input one. But nearly all hardware video sources
supply pictures in RGB formats. Thus grayscale conversion
is a highly popular transformation. To this end, in this paper,
we have used Advanced SIMD instructions to get significant
performance gain of RGB to GRAY conversion.

6. EXPERIMENTAL RESULTS

The experiments were conducted to test the benefit of the per-
formance of parallel solutions discussed in section 5.

6.1. Pandaboard-ES overview

The mobile platform on which the treatment was applied is
the TI OMAP4 SoC. The PandaBoard-ES is a low cost and an
open mobile software development platform enabling easy,
rapid and extremely extensible development. It is based on
the OMAP4460 SoC that highlights a dual-core ARM Cortex-
A9 MPCore based on SMP clocked at 1.2GHz.

6.2. Software specification

The operating system where the Pandaboard-ES is running is
the Ubuntu 12.04. The prototype is implemented using C++
language. The profiling tool used to measure the average pro-
cessing time in each function is the valgrind. The OpenMP
library, ported to a number of different platforms, was used to
perform the thread creation and synchronization.

6.3. Results

The effectiveness of the proposed HMI and detection results
are presented in [13].

Since, the Pandaboard-ES has two Cortex A9 CPUs,
we can run our functions, which are candidates for multi-
threading optimization, in two threads. Figure 7 shows the
performance results when the treatment is made in parallel.

Fig. 7. The performance results of the parallel implementa-
tion.

It was shown an interesting speed-up (about 1.54 times
faster than the initial sequential implementation).

The ARM Cortex A9 has a SIMD engine called NEON
used to accelerate media applications. As grayscaling has
SIMD features, we decide to accelerate its execution on the
NEON engine. SIMD technology, as mentioned in section 5,
can process multiple data with a single instruction call, con-
serving time for further computations. For that, we have im-
plemented an assembler ”NEON version” to accelerate color
conversion and we have treat eight pixels at one time. The
findings results give a great performance gain but we assessed
to go further and perform parallel calculation ”Parallel NEON
version” using two threads.

Fig. 8. Neon optimization.

23rd European Signal Processing Conference (EUSIPCO)

1614

We can see through Fig. 8 that Parallel NEON version
runs 3 times faster than Serial NEON version and 9 times
faster than purely C++ implementation from OpenCV (cvt-
Color() function).

Table 1 summarizes all obtained results. A reduction of
40% is obtained versus the mono core execution time.

Table 1. Summarized results.
Device OMAP 4460: Pandaboard-ES

Timing results (ms)

1 core: 1.2 GHz 475
2 cores: each 1.2 GHz 421
2 cores + OpenMP + Neon 273

Gain

Acceleration factor 1.739

Table 2 indicates that the obtained time for the embed-
ded system implementation is not sufficiently close to that
obtained on PC running an Intel core 2 Duo T5800 CPU.
However, with the embedded platform, we have the possibil-

Table 2. Time/Power comparison.
Measures PC Embedded System

Time (ms) 150 273
Thermal Design Power (Watt) [16, 17] 35 0.6

ity to 1) improve timing results, 2) exceed those obtained on
PC and 3) satisfy the energy consumption criterion by com-
bining the two Cortex A9 with the accelerated engines avail-
able on the SoC such as the DSP or the GPU.

7. CONCLUSION

The paper describes the architecture of an HMI for the con-
trol of an EPW based on face inclinations and eye blink-
ing. The implementation on dual core processor exploits the
use of threads for achieving greater efficiency and the use of
SIMD engine called NEON to accelerate image color con-
version. The proposed approach has proven to be effective
since a speed up of 1.73x is obtained. We are planning to per-
form further studies on maximizing the power of ARMs with
DSP/GPU accelerator since the achieved reduction in time is
not sufficient yet.

REFERENCES

[1] Nihei M., Fujie M.G.: Proposal for a New Development
Methodology for Assistive Technology Based on a Psy-
chological Model of Elderly People. In: Assistive Tech-
nologies. USA, (2012)

[2] Jia P., Hu H., Lu T., Yuan K.: Head gesture recognition
for hands-free control of an intelligent wheelchair. Int. J.
Ind. Rob. vol. 34, pp. 60-68, (2007)

[3] Wallam F., Asif M.: Dynamic finger movement tracking
and voice commands based smart wheelchair. In: Int. J.
of Computer and Electrical Engineering, (2011)

[4] Kim J., Park H., Bruce J., Sutton E., Rowles D., Pucci D.,
Holbrook J., Minocha J., Nardone B., West D., Laumann
A., Roth E., Jones M., Veledar E., Ghovanloo M.: The
Tongue Enables Computer and Wheelchair Control for
People with Spinal Cord Injury. In: Science Translational
Medicine, Vol. 5, Issue 213, (2013)

[5] Wei L., Hu H.: A hybrid human-machine interface for
hands-free control of an intelligent wheelchair. In: Int. J.
of Mechatron. Autom. vol. 1. pp. 97-111, (2011)

[6] Maskeliunas R., Simutis R.: Multimodal wheelchair con-
trol for the paralyzed people. Electron. Electr. Eng. vol.
111, pp. 81-84, (2011)

[7] Ben Taher F., Ben Amor N., Jallouli M.: EEG control
of an electric wheelchair for disabled persons. In: Int.
conf. on Individual and Collective Behaviors in Robotics
(ICBR), pp. 27-32, Sousse, 15-17 Dec (2013)

[8] Santana A., Yang C.: Robotic control using physiologi-
cal EMG and EEG signals. In: Advances in Autonome.
Robots. pp. 449-450, (2012)

[9] Brando A.S., Felix L.B., Bastos-Filho T.F., Sarcinelli-
Filho M.: Controlling devices using biological signals.
In: Int. J. Advanced. Robotic. Systems. pp. 22-33, (2011)

[10] Lian J. Hu., Qing H. G., Hong S., Gui X. Ch.: Research
of Electric Wheelchair Control System Based on DSP.
In: Applied Mechanics and Materials. pp. 1122-1126,
(2011)

[11] Jzau S. L., Sun M. H.: An FPGA-Based Brain-
Computer Interface for Wireless Electric Wheelchairs.
In: Applied Mechanics and Materials. vol. 284-287, pp.
1616-1621, January (2013)

[12] Islam Md. Sh., Bhuyan M. S., Sawal H. Md. Ali.:
FPGA Realization of a Fuzzy Based Wheelchair Con-
troller. In: Research J. of Applied Sciences. vol. 8, Issue.
9, pp. 442-448, (2013)

[13] Ghorbel A., Ben Amor N., Jallouli M.: An embedded
real-time hands free control of an electrical wheelchair.
In: IEEE Visual Communications and Image Processing
(IEEE VCIP) Conference. pp. 56-59, December (2014)

[14] Viola P., Jones M.: Robust Real-Time Face Detection.
In: Int. J. of Computer Vision. pp. 137-154, (2004)

[15] Krejcar O.: Handicapped People Virtual Keyboard
Controlled by Head Motion Detection. Symposium on
Smart Environments at workplaces, (2010)

[16] http://ark.intel.com/products/35581

[17] http://www.notebookcheck.net/OMAP-4460-
Notebook-Processor.83630.0.html

23rd European Signal Processing Conference (EUSIPCO)

1615

