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ABSTRACT

This paper provides a system-level performance comparison

of two fundamentally different transmission strategies for the

downlink of a cloud radio access network. The two strategies,

namely the data-sharing strategy and the compression-based

strategy, differ in the way the limited backhaul is utilized.

While the data-sharing strategy uses the backhaul to carry raw

user data, the compression strategy uses the backhaul to carry

compressed beamformed signals. Although these strategies

have been individually studied in the literature, a fair compar-

ison of the two schemes under practical network settings is

challenging because of the complexity in jointly optimizing

user scheduling, beamforming, and power control for system-

level performance evaluation, along with the need to optimize

cooperation clusters for the data-sharing strategy and quanti-

zation noise levels for the compression strategy. This paper

presents an optimization framework for both the data-sharing

and compression strategies, while taking into account losses

due to practical modulation in terms of gap to capacity and

practical quantization in terms of gap to rate-distortion limit.

The main conclusion of this paper is that the compression-

based strategy, even with a simple fixed-rate uniform quan-

tizer, outperforms the data-sharing strategy under medium to

high capacity backhauls. However, the data-sharing strat-

egy outperforms the compression strategy under low capacity

backhauls primarily because of the large quantization loss at

low backhaul capacity with compression.

1. INTRODUCTION

The ultra-dense cell deployment in the next generation (5G)

wireless networks calls for efficient management of inter-

cell interference. Cloud radio access network (C-RAN) has

emerged as a promising cellular architecture that allows joint

signal processing across base-stations (BSs) for interference

mitigation purposes whereby the BSs are connected to a

centralized cloud-computing based processor. This paper

compares the performance of two fundamentally different

transmission strategies for the downlink C-RAN, where the

BSs essentially act as relays in transmitting data from the

central processor to the remote users.

In the data-sharing strategy, the central processor shares

the data of each user to a cluster of BSs which then com-

pute the beamformed signals to be transmitted. In the com-

pression strategy, the central processor itself computes the

beamformed signals to be transmitted by each BS, which

are then quantized and sent to the BSs through capacity-

limited backhaul links. Individually, both the data-sharing

and compression strategies have been studied in the context

of C-RAN. However, a fair system-level comparison between

the two strategies under practical network settings is still not

available in the literature due to the challenges in solving

the corresponding network optimization problems involving

user scheduling, beamforming, power control, along with the

optimization of clusters for the data-sharing strategy and the

optimization of quantization noise levels for the compression

strategy. This paper tackles such a system-level performance

evaluation and tries to answer the question of under what

condition one strategy performs better than the other.

One contribution of this paper is that we model and take

into account loss due to practical modulation schemes in

terms of gap to capacity for both strategies. In addition, for

the compression strategy, we introduce a similar notion of gap

to rate-distortion limit to account for quantization losses due

to non-ideal quantizers used in practice. Further, we propose

a novel algorithm for the joint optimization of the beam-

formers and quantization noise levels for the compression

strategy based on an equivalence between weighted sum rate

(WSR) maximization and weighted minimum mean square

error (WMMSE) optimization.

We show through simulations on a heterogeneous cellu-

lar topology that whether one strategy is superior to the other

largely depends on the backhaul capacity constraint in the sys-

tem. If the available backhaul capacity is medium to high,

the compression strategy outperforms the data-sharing strat-

egy, even with a simple fixed-rate uniform scalar quantizer.

However, if the available backhaul capacity is low, the data-

sharing strategy outperforms the compression strategy. Intu-

itively, under low backhaul capacity the quantization noises

introduced in the compression strategy dominate the interfer-

ence, in which case it is better to just share the data directly

with a limited set of BSs rather than to compress.
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We note that in our previous work [1], a comparison be-

tween the data-sharing strategy and the compression strategy

is made. But the system considered in [1] is limited to only a

sum backhaul constraint, instead of the per-BS backhaul con-

straints considered here. Moreover, in [1], the data-sharing

strategy does not select an optimized cluster of BSs for each

user; the compression strategy does not consider the joint op-

timization of the beamformers and the quantization noise lev-

els; further only a fixed user scheduling is assumed.

This paper restricts attention to linear precoding strategies

and does not consider nonlinear precoding based on dirty-

paper coding [2]. A hybrid between the data-sharing and

compression strategies is also possible and is discussed in [1].

For more references on the data-sharing strategy, we refer the

readers to [3] and for the compression strategy to [4].

2. SYSTEM MODEL

Consider a downlink C-RAN consisting of L single-antenna

BSs serving K single-antenna remote users. All L BSs are

connected to a central processor with capacity-limited back-

haul links. (We use the term backhaul, because the links

carry digital data. These links are sometimes referred to as

fronthaul links in the C-RAN literature, especially when they

carry compressed analog signals.) The capacity of the back-

haul link connecting lth BS to the central processor is denoted

byCl, l = 1, . . . , L. We assume one data stream per user, and

that the central processor has access to the data and perfect

CSI for all K users in the network.

Let xl denote the complex signal transmitted by BS l and

x ∈ CL×1 = [x1, . . . , xL]
T be the aggregate signal from all

the BSs. The received signal at user k can be written as

yk = hH
k x+ zk, k = 1, 2, . . . ,K (1)

where hk ∈ C
L×1 = [h1,k, . . . , hL,k]

T is the channel to the

user k from all the BSs, and zk is the additive complex Gaus-

sian noise with zero-mean and variance σ2. Each BS l has a

transmit power budget denoted by Pl. Let sk denote the data

of kth user distributed as complex Gaussian with zero-mean

and unit variance, which is available at the central processor.

3. DATA-SHARING STRATEGY

In the data-sharing strategy, a cluster of BSs locally form

beamformers to cooperatively serve each user. The data for

that user is replicated at all the participating BSs in the clus-

ter via the backhaul links. A crucial decision is to select an

appropriate cluster of BSs for each user for interference miti-

gation, while staying under the limited backhaul capacity.

Let the beamforming vector for user k from all the BSs be

wk ∈ CL×1 = [w1,k, w2,k, . . . , wL,k]
T , where wl,k denotes

the component of the beamformer from BS l. If BS l does

not participate in cooperatively serving user k, then wl,k =

0. The beamformed signals transmitted from all the BSs can

then be written as

x =

K
∑

k=1

wksk. (2)

At user k, the signal-to-interference-plus-noise ratio (SINR)

can be expressed as

SINRk =
|hH

k wk|
2

∑

j 6=k |h
H
k wj |2 + σ2

. (3)

The information theoretical achievable rate for user k is re-

lated to SINR asRk = log(1+SINRk). However, this rate ex-
pression assumes Gaussian signaling, while in practice QAM

constellations are typically used for the Gaussian channel in

the moderate and high SINR regime. With moderate coding,

to achieve a given data rate we still need an SINR higher than

what is suggested above. This extra amount of power is usu-

ally captured by a so-called SNR gap. Denoting the gap by

Γm, we can rewrite the achievable rate for user k as

Rk = log

(

1 +
SINRk

Γm

)

. (4)

The optimization problem of finding the optimal set of

BS clusters and beamformers for the data-sharing scheme can

now be formulated as a WSR maximization problem under

per-BS power constraints and per-BS backhaul constraints:

maximize
wl,k

K
∑

k=1

αkRk (5a)

subject to

K
∑

k=1

|wl,k|
2 ≤ Pl, ∀l (5b)

K
∑

k=1

1{|wl,k|
2
}

Rk ≤ Cl, ∀l (5c)

where αk denotes the priority weight associated with user k

and the indicator function 1{|wl,k|
2
}

denotes if BS l partic-

ipates in beamforming to user k, and if so, the user rate Rk

is included in the backhaul constraint Cl. The beamforming

coefficients are computed at the central processor, and are as-

sumed to be transmitted to the BSs without any error. We

neglect the backhaul consumption for transmitting the beam-

formers. This formulation considers joint design of BS clus-

tering and beamforming. It also implicitly does power con-

trol and user scheduling. This optimization problem is solved

repeatedly and the BS clusters are dynamically optimized in

each time slot as the priority weights are updated.

The presence of the backhaul constraint (5c) makes the

optimization problem challenging. In this paper, we follow

the approximation suggested in [3] to first write the indica-

tor function as a l0 norm which is then approximated as a

weighted l1 norm as1{|wl,k|
2
}

=
∥

∥|wl,k|
2
∥

∥

0
≈ βl,k|wl,k|

2, (6)

23rd European Signal Processing Conference (EUSIPCO)

2502



where βl,k is a constant weight associated with BS l and user

k and is updated iteratively according to

βl,k =
1

|wl,k|2 + τ
, ∀ k, l (7)

for some regularization constant τ > 0 and |wl,k|
2 from the

previous iteration. This simplifies the constraint (5c) to

K
∑

k=1

βl,k|wl,k|
2Rk ≤ Cl, ∀l (8)

which is equivalent to a generalized power constraint, ifRk is

assumed fixed and heuristically chosen from the previous iter-

ation. The resulting optimization problem can then be solved

using an equivalence between the WSR maximization and the

WMMSE problem.

The only difference between the formulation (5) and that

in [3] is the gap factor Γm. We can easily verify that the

equivalence between WSR optimization and WMMSE ex-

tends even with the gap Γm. Below we summarize the over-

all algorithm for the optimization of the data-sharing strategy.

Though we do not have theoretical guarantee of its conver-

gence in general, it is observed to converge in simulations.

Algorithm 1 WSR maximization for data-sharing strategy

Initialization: {βl,k}, {wk}, {Rk};
Repeat:

1. For fixed {wk}, compute the MMSE receivers {uk} and

the corresponding MSE {ek} according to (11) and (9);

2. Update the MSE weights {ρk} according to (10);

3. For fixed {uk}, {ρk}, and {Rk} in (12c), find the optimal

transmit beamformer {wl,k} by solving (12);

4. Update {βl,k} as in (7). Compute the achievable rate

{Rk} according to (4);

Until convergence

The quantities used in the WMMSE approach in the above

algorithm are as follows. The mean square error (MSE) for

user k is defined as

ek = |uk|
2



Γm

(

∑

j 6=k

|hH
k wj |

2 + σ2

)

+ |hH
k wk|

2





− 2 Re{uH
k hH

k wk}+ 1.

(9)

The optimal MSE weight ρk under fixed {wk} and {uk} is

given by

ρk = e−1

k . (10)

The optimal receive beamformer uk under fixed {wk} and

{ρk} is given by

uk =



Γm

(

∑

j 6=k

|hH
k wj |

2 + σ2

)

+ |hH
k wk|

2





−1

hH
k wk.

(11)

The optimization of transmit beamformers {wk} under fixed

{uk}, {ρk} and fixed {Rk} is the following quadratically

constrained quadratic programming (QCQP) problem:

minimize
wl,k

K
∑

k=1

wH
k Akwk − Re{bH

k wk} (12a)

subject to

K
∑

k=1

|wl,k|
2 ≤ Pl, ∀l (12b)

K
∑

k=1

Rkβl,k|wl,k|
2 ≤ Cl, ∀l (12c)

whereAk ∈ CL×L and bk ∈ CL×1 are defined to be

Ak =
∑

j 6=k

αjρj |uj |
2Γmhjh

H
j + αkρk|uk|

2hkh
H
k (13)

bk = 2αkρkukhk (14)

4. COMPRESSION STRATEGY

In the compression strategy, the central processor computes

the beamformed analog signals to be transmitted by the BSs.

These signals have to be compressed before they can be for-

warded to the corresponding BSs through the finite-capacity

backhaul links. The process of compression introduces quan-

tization noises; the quantization noise levels depend on back-

haul capacities.

In the data-sharing strategy, the beamformed signal x as

given by (2) is computed at the BSs. In the compression strat-

egy, x is computed at the central processor, then compressed,

sent over the backhaul links, and reproduced by the BSs. We

model the quantization process for x as

x̂ = x+ e, (15)

where e is the quantization noise with covariance matrixQ ∈
CL×L modelled as complex Gaussian and assumed to be in-

dependent of x̂. The received SINR for user k can then be

written as

SINRk =
|hH

k wk|
2

∑

j 6=k |h
H
k wj |2 + σ2 + |hH

k Qhk|
. (16)

This paper considers independent quantization at each BS, in

which case Q is a diagonal matrix with diagonal entries ql.

(Multivariate compression is also possible and has been stud-

ied in [4].) Assuming an ideal vector quantizer, the quanti-

zation noise level ql and the backhaul capacity Cl (from rate-

distortion theory) are related as

log

(

1 +

∑K

k=1
|wl,k|

2

ql

)

≤ Cl. (17)

However, the quantizers used in practice for compression can

be far from ideal. In order to capture these losses, we intro-

duce a notion of gap to rate-distortion limit. Following [5],
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we note that operational distortion achieved by virtually all

practical quantizers at high resolution follow the relation

δ(R) = Γqvar(X)2−R. (18)

where var(X) is the variance of the signal being quantized,R
is the rate of quantizer, and Γq is a constant that depends on

the particular choice of quantizer. For example, for a fixed-

rate (uncoded) uniform scalar quantizer, Γq =
√
3π
2

, which

is around 2.72. For a uniform scalar quantizer followed by

variable-rate entropy coding we get Γq = πe
6
which is around

1.42. Note that Γq = 1 corresponds to the distortion achiev-

able by the best possible vector quantization scheme. Ac-

counting for this, we can rewrite the relation above as

log

(

1 +
Γq

∑K

k=1
|wl,k|

2

ql

)

≤ Cl. (19)

Note that
∑K

k=1
|wl,k|

2 is the power of the signal that is quan-

tized for BS l. The achievable rate for user k, Rk, is again as

given by (4).

The design of the compression strategy can now be stated

as a WSR maximization problem over the transmit beam-

formers and the quantization noise levels:

maximize
wl,k,ql

K
∑

k=1

αkRk (20a)

subject to

K
∑

k=1

|wl,k|
2 −

2Cl − 1

Γq

ql ≤ 0, ∀l (20b)

K
∑

k=1

|wl,k|
2 + ql ≤ Pl, ∀l (20c)

The constraint (20b) is just a reformulation of (19) while the

constraint (20c) is the power constraint on the compressed

signal xl. Finding the globally optimal solution to the above

problem is challenging. An iterative approach based on the

majorize-minimization (MM) algorithm has been suggested

in [4]. The algorithm in [4] transforms wkw
H
k into a non-

negative definite matrix variableRk and ignores the rank con-

straint on Rk in the optimization. In this paper, we propose

a novel way to solve (20) by reformulating it as an equiva-

lent WMMSE problem and then using the block coordinate

descent method between the transmit beamformers {wk} and
the quantization noise levels {ql}, the receive beamformers

{uk}, and the MSE weights {ρk}. The algorithm can be

shown to reach a stationary point of (20). The explicit equiv-

alence is not stated here for brevity. The numerical procedure

is presented as Algorithm 2.

In Algorithm 2, the optimization of the transmit beam-

formers {wk} and the quantization noise levels {ql} under

Algorithm 2 WSR maximization for compression strategy

Initialization: {wk}, {ql};
Repeat:

1. For fixed {wk}, {ql}, compute the MMSE receivers {uk}
and the corresponding MSE {ek} according to (11) and

(9) with σ2 replaced by σ2+ |hH
k Qhk| in both equations;

2. Update the MSE weights {ρk} according to (10);

3. For fixed {uk} and {ρk}, find the optimal transmit beam-

formers {wk} and quantization noise levels {ql} by solv-

ing the convex optimization problem (21);

Until convergence

fixed {uk} and {ρk} is the following convex program:

min
wl,k,ql

K
∑

k=1

wH
k Akwk − Re{bH

k wk}+ |uk|
2Γm|hH

k Qhk|

(21a)

s.t.

K
∑

k=1

|wl,k|
2 −

2Cl − 1

Γq

ql ≤ 0, ∀l (21b)

K
∑

k=1

|wl,k|
2 + ql ≤ Pl, ∀l (21c)

whereAk and bk are as defined in (13) and (14).

We further observe that the convex optimization prob-

lem (21) has a particular structure that can be exploited.

Observe that the two constraints (21b) and (21c) provide a

lower and an upper bound on {ql}, respectively. Since the

objective (21a) is monotonically decreasing in {ql}, we can

replace the inequality with equality in the constraint (21b)

and substitute {ql} from (21b) into the objective (21a) and

the constraint (21c). This results in a QCQP problem in only

a single set of variables {wk}, which can be efficiently solved
by standard solvers.

5. PERFORMANCE EVALUATION

We consider a 7-cell wrapped-around two-tier heterogeneous

network with simulation parameters as listed in Table 1. All

the macro-BSs and pico-BSs are connected to a centralized

processor by capacity-limited backhaul links. We compare

the performance of the two strategies under varying backhaul

capacities. The combined background noise and interference

caused by two tiers of cells outside the 7-cells is estimated to

be -150 dBm/Hz. We assume an SNR gap of Γm = 9 dB

(corresponding to uncoded QAM transmission) and a gap to

rate-distortion limit of Γq = 4.3 dB (corresponding to un-

coded fixed-rate uniform scalar quantizer). At each time slot,

we solve the respective network optimization problems and

update the weights in WSR maximization according to the

proportional fair criterion.
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Channel bandwidth 10MHz

Distance between cells 0.8 km

Number of users/cell 30

Number of macro-BSs/cell 1

Number of pico-BSs/cell 3

Max. Tx power at macro-BS 43 dBm

Max. Tx Power at pico-BS 30 dBm

Antenna gain 15 dBi

Background noise −169 dBm/Hz

Path loss from macro-BS to user 128.1 + 37.6 log
10
(d)

Path loss from pico-BS to user 140.7 + 36.7 log
10
(d)

Log-normal shadowing 8 dB

Rayleigh small scale fading 0 dB

SNR gap (Γm) 9 dB

Rate-distortion gap (Γq) 4.3 dB

Table 1. Simulation Parameters

Fig. 1 shows the cumulative distribution of user rates un-

der varying backhaul capacities for both strategies. For ref-

erence, we also include the full cooperation case with infinite

backhaul capacity and the baseline scheme of no cooperation

with each user connected to the strongest BS. When the back-

haul capacity is low at 40Mbps/macro-BS and 20Mbps/pico-

BS, the data-sharing strategy outperforms the compression

strategy. The 50-percentile rate for the data-sharing strat-

egy is about 3 times that of the compression strategy. If we

double the backhaul capacity to 80 Mbps/macro-BS and 40

Mbps/pico-BS, the compression strategy becomes compara-

ble to the data-sharing strategy and both have about the same

50-percentile user rates. At this operating point, the sum

backhaul capacity is about 6 times that of the average sum

rate per cell. We also observe that the compression strategy

favours low rate users while the data-sharing strategy favours

high rate users. A reason for this is that the compression strat-

egy under low backhaul capacity is limited by the quantiza-

tion noises which are about the same for all the BS signals

resulting in more uniform user rates.

We observe that with moderate-to-high backhaul capacity

of 160 Mbps/macro-BS and 80 Mbps/pico-BS, the compres-

sion strategy outperforms the data-sharing strategy with the

50-percentile rate for the compression strategy more than 2.5

times than that of data-sharing. Increasing the backhaul in this

regime improves the compression strategy drastically, while

the data-sharing strategy sees only a moderate increase. This

is because, at low backhaul capacity, the performance of the

compression strategy is limited by the quantization noises.

An increase in backhaul capacity reduces the quantization

noise levels exponentially, while a similar increase in the

backhaul capacity does not buy as much for the data-sharing

strategy. Finally with a backhaul of 240 Mbps/macro-BS

and 120 Mbps/pico-BS, the compression strategy performs

close to the full cooperation limit, while for the data-sharing

strategy, backhaul capacities of 1200 Mbps/macro-BS and

600 Mbps/pico-BS are needed to get as close.
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Fig. 1. Comparison of cumulative distribution of user rates for

the data-sharing and compression strategies.

6. CONCLUSIONS

This paper compares two fundamentally different strategies,

the data-sharing and the compression strategy, for the down-

link C-RAN under realistic network settings considering var-

ious practical aspects. Our main conclusion is that the back-

haul capacity constraint is crucial in deciding which strategy

to adopt. The compression strategy offers better user rates for

moderate-to-high backhaul capacity, due to its ability to have

full cooperation before quantization. But it suffers from high

quantization loss at low backhaul capacity in which case it is

better to do data-sharing with limited cooperation cluster.
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