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ABSTRACT

In this paper, we propose a novel structure for implement-
ing a kernel adaptive filter as an add-on component for a linear
adaptive filter. The kernel adaptive filter has been proposed
as a solution to non-linear adaptive problems and their effec-
tiveness has been demonstrated. However, it is not intended
for replacing the linear adaptive filters at all, rather, we ex-
pect it to complement the performance of linear ones in non-
linear environments. We, therefore, consider a novel struc-
ture which enables us to implement a kernel adaptive filter as
an add-on for a linear adaptive filter. The proposed structure
performs as a linear adaptive filter in the linear-dominant en-
vironments, however, in non-linear environments, we can add
a kernel adaptive filter without any modification on the op-
eration of the linear one. The effectiveness of the proposed
method is confirmed through the computer simulations.

1. INTRODUCTION

The kernel adaptive filter is one of the emerging techniques
for non-linear signal processing [1]. Several algorithms had
been proposed so far [1–4]. The kernel adaptive filters are
shown to be effective for non-linear problems so that they are
expected to complement the linear adaptive filters.

Although the kernel filters are effective for non-linear
problems, we believe that the importance of the linear adap-
tive filters will not affected because of their well-analyzed
convergence behavior and acceptable computational com-
plexity. Besides, there still exist implementation problems of
the kernel adaptive filters in actual applications.

Of those problems, in this paper, we deal with the two
problems, namely, (i) the selection of the value of the ker-
nel parameter; and (ii) the performance degradation in linear-
dominant environments. These problems are described as be-
low. The Gaussian kernel is widely used in the kernel adap-
tive algorithms and which has a parameter, called the kernel
parameter, or the bandwidth parameter. It is known that the

selection of the parameter affects the convergence character-
istics of the filter, however, there are no standard method for
selecting the optimum value (problem (i)). Also, when the
target environment is near-linear, the performance of the ker-
nel filter is degraded compared with that of the linear filters
(problem (ii)).

For the problem (i), the multi-kernel adaptive filter [5, 6]
is one of the possible solutions. It uses multiple kernels with
different values of kernel parameters simultaneously to relax
the selection problem. However, the selection of an optimum
value with an acceptable computational complexity remain
unsolved [6]. For the problem (ii), [7] proposes to use a linear
kernel as one of the multi-kernel structure, and it is shown to
be effective to acoustic echo canceling application. However,
in this structure, the linear kernel has some dependency on the
other non-linear kernels, e.g., they share the same dictionary,
effect of sparcification of the input signal, etc.

In this paper, we propose a novel structure of the kernel
adaptive filter in order to solve the above mentioned two prob-
lems. In the proposed structure, the kernel adaptive filter acts
like an add-on to the linear adaptive filter. We can attach or
detach the kernel filter according to the environments where
the adaptive filter is applied without affecting the operation
of the linear filter. The structure is based on the mixture con-
figuration of a kernel and a linear adaptive filters which we
proposed in [8]. We confirmed the effectiveness of the pro-
posed structure through computer simulations.

We note that there exist several structures which use linear
and non-linear adaptive filters simultaneously, e.g., [9–11]. In
those structures, each filter is updated in parallel using its lo-
cal error signal and then the outputs are adaptively mixed to
generate the global output. On the other hand, in the pro-
posed structure, the kernel filters are updated after the update
of liner filter. In that process, the a posteriori error of the lin-
ear filter is used as the error signal of the kernel filter. This
formulation enables the kernel filter to be used as an attach-
ment to the linear one without any modification. Besides, it
can reduce the effect of linear component in the error signal
so that the structure can improve the convergence property in
specific environments as shown in the simulation results.
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2. PREPARATION

Here, the kernel normalized least mean square (KNLMS) al-
gorithm [2] and its multi-kernel implementation [5] are briefly
reviewed. In the following, a matrix or a vector is indicated
by bold letter, e.g., R, or r. The transpose of R is indicated
as RT, and variable at time n is expressed as R(n).

2.1. Kernel adaptive filters

The concept of a kernel adaptive filter is derived by applying
the kernel method to the linear adaptive filter [1]. To apply
the kernel method, the input signal {x(n) | n = 0, 1, 2, . . .} is
mapped onto a higher order characteristics space. We express
this mapping as ϕ(x(n)) where x(n) shows the input vector
of the filter at time n, whose length is denoted by S.

Then, we expand and approximate the coefficient vector
of the kernel filter w(n) using {ϕ(x(m)) |m = 0, . . . , n−1}
as w′(n):

w′(n) = h0ϕ(x(0)) + · · ·+ hn−1ϕ(x(n− 1)) (1)

where {hi | i = 0, . . . , n − 1} are the weights to be deter-
mined. The length of w(n) and w′(n) are same as that of
x(n), or S. Using the kernel trick [1], the output signal y(n)
is expressed as

y(n) = ϕ(x(n))Tw′(n)

= h0κ(x(n),x(0)) + · · ·+ hnκ(x(n),x(n− 1)) (2)

where κ(·, ·) shows the kernel function. By defining the vec-
tors X (n) and h(n) as

X (n) = [κ(x(n),x(0)) · · · κ(x(n),x(n− 1))]
T

h(n) = [h0 . . . hn−1]
T (3)

and substituting into (2), we have a simpler expression of y(n)

y(n) = XT(n)h(n). (4)

This equation show the input-output relation of the kernel
adaptive filter h(n). For updating h(n), we use the kernel
adaptive algorithms [1].

As the kernel function, the Gaussian kernel of the follow-
ing form is generally used in kernel adaptive filtering, i.e.,

κ(x,y) = exp
(
−ζ||x− y||2

)
(5)

where ζ is a parameter called the kernel parameter or the ker-
nel bandwidth. The selection of the value of ζ affects the
convergence characteristics (problem (i)).

2.2. KNLMS algorithm

The KNLMS algorithm [2] is the kernel version of the linear
NLMS algorithm.The filter coefficients h(n) are updated by

h(n+ 1) = h(n) + η
e(n)X (n)

ϵ+ XT(n)X (n)
(6)

e(n) = d(n)−XT(n)h(n− 1) (7)

where η and ϵ are a step-size and a stabilization parame-
ters respectively. The past input signal vectors {x(j) | j =
0, 1, · · · , n − 1} are stored as the dictionary for learning and
its size increases as time advances. Hence, the computa-
tional complexity is time varying. To maintain the applicable
amount of computation, several sparsification methods of the
input signal were proposed [1, 2, 12]. In the following, we
assume to use the method of [2] due to its simple structure.
In that, the condition below is examined at each time

max|X (n)|j=1,··· ,J < T0 (8)

where T0 is the predefined threshold value, and J shows the
number of entries in the dictionary. Only when this condition
holds, x(n) will be added as a new entry to the dictionary.

2.3. Multi-kernel adaptive filter [5]

When we use the Gaussian kernel, the convergence charac-
teristics are affected by the parameter ζ in (5). One of the
practical problems of the kernel adaptive filters is to select
an optimum value for this parameter. In order to relax this
problem by using multiple kernels simultaneously, the multi-
kernel adaptive filter was proposed [5, 6].

In this configuration, the filter output is expressed as

yk(n) =
M∑

m=1

Jm∑
j=1

h
(m)
j (n)κm(x(n),x(j)) (9)

where M shows the number of kernels used, and Jm the num-
ber of entries in the dictionary of m-th kernel. h(m)

j (n) shows
the j-th coefficients of the adaptive filter of the m-th kernel at
time n.

It is shown [5] that the configuration could relax the prob-
lem of selecting the optimum values for kernel parameters.
Besides, it is shown in [7] that using a linear kernel as one of
the multi-kernels can improve the convergence characteristics
of the adaptive filter for acoustic echo canceler in which elim-
ination of the linear component is important. Therefore, the
two problems mentioned in Introduction seem to be solvable
by using the multi-kernel structure with a linear kernel.

However, we note that there are some implementation
problems in the structure of [7]. For example, the coefficient
vector wℓk(n) of the adaptive filter corresponds to the linear
kernel is equivalently updated by [8]

wℓk(n+ 1) = wℓk(n) +
ηe(n)

∑n−1
j=0 x(j)xT(j)x(n)∑M

m=1 XT
m(n)Xm(n)

.

(10)

Known from this equation, wℓk(n) depends on the selection
of the other kernels including the kernel parameters because
the denominator contains Xm(n) (see Eq. (3)).

The other point which may cause difficulty is that, even if
the applied environment is linear dominant, the kernel adap-
tive filter still need to be updated, and this requires additional
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computational complexity. In the following, we propose a
structure that enables us to avoid these possible problems.

3. PROPOSED METHOD

Here, we describe the proposed structure which is based on
the method in [8]. We show that, in the proposed structure,
we can implement the kernel adaptive filter as an attachment
to the linear adaptive filter.

3.1. Linear and multi-kernel filter configuration [8]

In [8], we considered a mixture configuration of a linear and
a multi-kernel adaptive filters and derived an algorithm which
update each filter independently in the structure. Although the
configuration is similar to the one proposed in [7], they differ
in the following point. Our method uses a linear adaptive
filter instead of a linear kernel, and, we showed that the linear
and the kernel filters can be updated independently using the
algorithm summarized below.

Fig. 1. Configuration of the method of [8]. The region in
the dashed line is the multi-kernel adaptive filter and ‘Update
term’ shows the calculation of the equation (14)

In Fig. 1, we show the configuration of [8]. As shown in
the figure, we employ a linear adaptive filter simultaneously
with the multi-kernel adaptive filter. We denote the filter co-
efficients of the linear filter as wL(n) and is expressed as

wL(n) = [w0(n) w1(n) . . . wS−1(n)]
T (11)

where S shows the number of coefficients. Its output yL(n)
is given as yL(n) = xT(n)wL(n). Also, a multi-kernel adap-
tive filter is used whose kernels are assumed to be Gaussian
with different values of the kernel parameter as in [5].

After the calculation of the error signal ê(n) by ê(n) =
d(n) − yL(n) − yk(n), the linear and kernel adaptive filters
are updated.

We showed that the linear and the kernel filters can be
updated independently by the following procedure. At first,
we update only wL(n) using the linear NLMS algorithm as

wL(n+ 1) = wL(n) + α
ê(n)

ϵ+ xT (n)x(n)
x(n) (12)

where α and ϵ are the step-size and the stabilizing parame-
ters respectively. By comparing Eq (12) with (10), we can
see that, in the proposed method, wL(n) can be updated in-
dependently of the kernel filter because (12) does not contain
Xm(n). Then, using the updated wL(n+1), we calculate the
a posteriori error êp(n) of the linear filter as

êp(n) = d(n)− xT(n)wL(n+ 1)− yk(n)

= d(n)− (yL(n) + ∆yL(n))− yk(n)

= ê(n)−∆yL(n) (13)

where ∆yL(n) is defined as [8]

∆yL(n) = α
ê(n)

ϵ+ xT(n)x(n)
xT(n)x(n). (14)

Then, the kernel filter is updated using êp(n) as

hm(n+ 1) =hm(n) + η
êp(n)Xm(n)∑M

k=1 X T
k (n)Xk(n)

(15)

where m = 1, 2, . . . ,M . Here, we can see that the kernel fil-
ter can be updated independently of the linear filter. Besides,
the term ∆yL(n) in (14) can be calculated before updating
wL(n), and hence, we could update all the filters at once.

3.2. Proposed structure

Using the method just described, we propose a novel structure
of the kernel filter. In the proposed structure, a kernel filter is
an add-on component to a linear filter, and it can be attached
or detached according to the characteristics of the target en-
vironment. This feature can be achieved by the independence
of the linear and the kernel filters in the method. Besides,
by using the multi-kernel adaptive filter, the problem of the
selection of the kernel parameter could be relaxed.

In Fig.2, we show a conceptual structure of the proposed
method. As shown in this figure, the kernel adaptive filter
is an add-on component to the linear filter that is detach-
able when it is not required. The advantage of the proposed
method is that the linear filter can be used without any modi-
fication while the kernel filter is attached or detached.

3.3. Algorithm

When the kernel filter is detached, only the linear filter will
be updated
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Fig. 2. Idea of the proposed structure. The kernel adaptive
filter can be added to the linear filter according to characteris-
tics of the applied environment. The modification of the linear
adaptive filter is not required with or without the kernel filter.

1. The error signal ê(n) = d(n)− yL(n)

2. The linear adaptive filter wL(n) is updated using Eq. (12)
where we assumed the NLMS algorithm is used.

On the other hand, when the kernel filter is attached, the
filters will be updated according to the following steps:
1. The error signal ê(n) = d(n)− yL(n)− yk(n)

2. The linear adaptive filter wL(n) is updated using Eq. (12)

3. From equations (13) and (14), the a posteriori error êp(n)
is calculated by

êp(n) =

(
1− α

xT(n)x(n)

(ϵ+ xT (n)x(n))

)
ê(n)

4. The kernel adaptive filter h(n) is updated using Eq. (15)
Note that we do not need add any modification to the update
equations (12) or (15) regardless of the status of the kernel
filter. Moreover, we can update the linear and kernel filter
in parallel because êp(n) can be calculated without updating
wL(n) as mentioned in 3.1.

4. SIMULATION RESULTS

Here, we show the results of simulations to confirm the ef-
fectiveness of the proposed method. In the simulations, we
compared three algorithms, namely, (i) the linear NLMS, (ii)
the multi-kernel NLMS, and (iii) the multi-kernel NLMS with
a linear kernel and (iv) the proposed. For (ii), (iii), and (iv),
we used two Gaussian kernels with different kernel bandwidth
which were selected to obtain near-optimal convergence. The
step-size parameters of the linear and the kernel NLMS algo-
rithms were α = 0.2 and η = 0.1 respectively. The Gaussian
noise was added to the desired signal whose mean was µ = 0
and the variance was fixed as σ2

n = 0.001. The results shown
in this section are ensemble averages of 300 independent sim-
ulations. For the proposed method, the kernel filter was de-
tached at n = 400 and attached again at n = 600 to confirm
the effect of the proposed structure.

4.1. Linear-dominant model

First, the filters are applied to an artificial mixture model of
linear and non-linear systems whose input-output relation is
given as

d(n) =a1u(n)+a2u(n−1)+a3(0.8−0.5 exp(−u2(n)))u(n)

− a4(0.3 + 0.9 exp(−u2(n))u(n− 1)

− 0.1a5 sin (u(n)π) (16)

where the coefficients a1, . . ., a5 were set as

[a1 a2 a3 a4 a5] ={
[0.5 0.5 0.2 0.2 0.2] (n ≤ 700)
[0.3 0.0 0.0 0.5 0.5] (n > 700)

(17)

We set T0 as 0.9, and ζm as −0.1 and −1.8 for the multi-
kernel filters.

The results are shown in Fig. 3. From the figure, we can
confirm the effectiveness of the linear filter used in the multi-
kernel configuration. Besides, the MSE property of the pro-
posed method is almost identical to that of the linear NLMS.
Hence, for this configuration, we may detach the kernel filter
for reducing the required computational complexity.
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Fig. 3. Comparison of the algorithms in terms of MSE for the
system defined by the equation (16).

4.2. Non-linear system model [13]

Next, we simulated the model used in [13], in which the signal
d(n) was generated by the equation below:

ϕ(y(n)) =


y(n)

3[0.1 + 0.9y2(n)]1/2
for y(n) ≤ 0

−y2(n)[1− exp(0.7y(n)]

3
for y(n) > 0

d(n) = ϕ(y(n)) + ξ(n) (18)
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where ξ(n) is the additive Gaussian noise, and y(n) is given
as

y(n) = aTu(n)− 0.2y(n− 1) + 0.35y(n− 2) (19)

where a = [1 0.5]T and u(n) is u(n) = [u1(n) u2(n)]
T.

The results are shown in Fig. 4. From the figure, for this
model, we can see that the proposed method provides better
convergence characteristics than other algorithms, especially
the multi-kernel with a linear kernel configuration. The re-
sults demonstrate that the usage of the a posteriori error in the
proposed method can eliminate the effect of the linear com-
ponents in this model.
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Fig. 4. Comparison of the algorithms in terms of MSE for the
system defined by the equation (18).

5. CONCLUSIONS

In this paper, we proposed a novel structure of the kernel
adaptive filter which can be attached to a linear adaptive filter
as an add-on component. The proposed structure is based on
the algorithm of [8] in which a linear and a kernel adaptive fil-
ters are independently updated. Featuring this characteristics,
in the proposed structure, the kernel adaptive filter can be at-
tached or detached according to the target environment with-
out any modification to the linear filter. Through computer
simulations, we confirmed the effectiveness of the proposed
structure. As a future work, we will consider the switching
algorithm for automatically attach or detach the kernel filter
according to the environments.
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