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ABSTRACT
Campbell’s theorem is a fundamental result in noise theory
and is applied in many fields of science and engineering. It
gives a simple but very powerful expression for the mean and
standard deviation of a stationary random pulse train. We gen-
eralize Campbell’s theorem to the non-stationary case where
the random process is space and time dependent. We also
generalize it to a pulse train of waves, acoustic and electro-
magnetic, where the intensity is defined as the absolute square
of the pulse train.

Index Terms— nonstationary noise, Campbell’s theorem,
random pulse train, reverberation, time-frequency

1. INTRODUCTION

One of the most fundamental results in noise theory is Camp-
bell’s theorem, a result that was given by Campbell [1, 2]
in 1909 soon after the basic concepts of noise were devel-
oped [3]. Campbell’s theorem applies to a random process
that is a pulse train of the following form

s =
N∑

n=1

f(t− tn) (1)

where f(t) is a deterministic function of time, tn are random
arrival times, and N is the number of constituents. Camp-
bell’s result is that the mean and standard deviation of the
process are given by

⟨s⟩ = N

∫ ∞

−∞
f(t)dt (2)

σ2 =
⟨
s2
⟩
− ⟨s⟩2 = N

∫ ∞

−∞
f2(t)dt (3)

This is a simple but very powerful result that is easy to apply,
is used in almost all fields and has found many applications.
Furthermore, sometime later, Rowland [4] considered two se-
ries where in addition to Eq. (1) we have the series

q =

N∑
n=1

g(t− tn) (4)
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He showed that covariance between two pulse trains is given
by

⟨(s− ⟨s⟩) (q − ⟨q⟩)⟩ = N

∫ ∞

−∞
f(t)g(t)dt (5)

We point out that a fruitful view point is to think of a pulse
train as consisting of delta functions,

∑N
n=1 δ(t−tn), and let-

ting the sum go through a linear filter whose impulse response
function is f(t).

In deriving the above results a number of assumptions are
made, the most important is that the series are stationary. In
this paper we consider a non-stationary model where we have
spatial and time dependence. We explicitly derive the mean
and standard deviations analogous to Campbell’s theorem and
show that in the limit of infinite time we recover Campbell’s
theorem.

2. NON-STATIONARY PULSE TRAIN

Consider the following model of a non-stationary pulse train
as illustrated in the figure. At t = 0, N “particles with width”,

as represented by the f(t), are generated at random positions
xn chosen from a uniform distribution ranging from −a to 0.
The particles move to the right with a constant velocity, c. At
position x and time t we observe the random process given by

V (x, t) =
N∑

n=1

f(x− ct− xn) (6)

We define the ensemble average as the average over the initial
positions xn,

⟨V (x, t)⟩ = N

∫ ∞

−∞
P (xn)f(x− ct− xn)dxn (7)



where P (xn) is the probability distribution of xn. For the case
of a uniform distribution

P (xn) =

{
1/a −a < xn < 0
0 otherwise (8)

and therefore

⟨V (x, t)⟩ = N

a

∫ 0

−a

f(x−ct−xn)dxn =
N

a

∫ x−ct+a

x−ct

f(z)dz

(9)
where we have made the substitution z = x − ct − xn and
changed the limits accordingly.

Now, suppose we take N and a large in such a manner
that

N

a
→ ρ for N → ∞ and a → ∞ (10)

where ρ is the constant density. Hence, we have that

⟨V (x, t)⟩ = ρ

∫ ∞

x−ct

f(z)dz (11)

This is the average at position x and time t for N and a → ∞.
If we further take t → ∞ which can be thought of as the
steady state limit then we have

⟨V (x, t)⟩ = ρ

∫ ∞

−∞
f(z)dz (12)

which is the first part of Campbell’s theorem Eq. (2). In Eq.
(9) and (11) the result is position dependent but as time goes
to infinity we obtain a stationary process and the resulting
average, Eq. (12), is independent of position.

To calculate the standard deviation we first consider

V 2(x, t) =
N∑

n=1

N∑
k=1

f(x− ct− xn)f(x− ct− xk) (13)

and following the same procedure as above we obtain

⟨
V 2(x, t)

⟩
=

N

a

∫ x−ct+a

x−ct

f2(z)dz

+
N(N − 1)

a2

(∫ x−ct+a

x−ct

f(z)dz

)2

(14)

Taking the limit as in Eq. (10) and noting that N/a2 → 0 we
have⟨

V 2(x, t)
⟩
= ρ

∫ ∞

x−ct

f2(z)dz + ρ2
(∫ ∞

x−ct

f(z)dz

)2

(15)

The standard deviation σ2 =
⟨
V 2(x, t)

⟩
− ⟨V (x, t)⟩2 is

σ2 =
N

a

∫ x−ct+a

x−ct

f2(z)dz +
N(N − 1)

a2

(∫ x−ct+a

x−ct

f(z)dz

)2

−
(
N

a

∫ x−ct+a

x−ct

f(z)dz

)2

(16)

=
N

a

∫ x−ct+a

x−ct

f2(z)dz − N

a2

(∫ x−ct+a

x−ct

f(z)dz

)2

(17)

If we take the limit as per Eq. (10) we obtain

σ2 = ρ

∫ ∞

x−ct

f2(z)dz (18)

and if we further take t → ∞ then we have

σ2 = ρ

∫ ∞

−∞
f2(z)dz (19)

which is the second part of Campbell’s theorem, Eq. (3).
We consider Eq. (9) and Eq. (11) as a nonstationary po-

sition and time dependent Campbell’s theorem for the mean;
Eq. (17) and (18) to be a generalization of the standard devi-
ation.

3. NON-UNIFORM DENSITY

In the above considerations we have taken the initial density
to be uniform as given by Eq. (8). For a non uniform ini-
tial distribution given by a probability density P (xn), but still
constant velocity motion, we have

⟨V (x, t)⟩ = N

∫ ∞

−∞
f(x− ct− xn)P (xn)dxn (20)

and ⟨
V 2(x, t)

⟩
= N

∫ ∞

−∞
f2(x− ct− xn)P (xn)dxn

+N(N − 1)

(∫ ∞

−∞
f(x− ct− xn)P (xn)dxn

)2

(21)

The standard deviation is given by

σ2 = N

∫ ∞

−∞
f2(x− ct− xn)P (xn)dxn

−N

(∫ ∞

−∞
f(x− ct− xn)P (xn)dxn

)2

(22)

It is possible for the second term to be significant depending
on P (xn) and f(x).

4. GENERAL MOTION

In the above, we have taken motion to be constant velocity;
however, there are situations where non-constant velocity is
appropriate. Suppose the motion is governed by

x = xn + η(t) (23)

To take that into account, replace ct by a time function that
describes the motion. We have



⟨V (x, t)⟩ = N

∫ ∞

−∞
f(x− η(t)− xn)P (xn)dxn (24)

and further⟨
V 2(x, t)

⟩
= N

∫ ∞

−∞
f2(x− η(t)− xn)P (xn)dxn

+N(N − 1)

(∫ ∞

−∞
f(x− η(t)− xn)P (xn)dxn

)2

(25)

The standard deviation is then

σ2 = N

∫ ∞

−∞
f2(x− η(t)− xn)P (xn)dxn

−N

(∫ ∞

−∞
f(x− η(t)− xn)P (xn)dxn

)2

(26)

For the case of uniform density, as per Eq. (8) and taking
the same limits as in Section 2 we have for the mean and
standard deviation that

⟨V (x, t)⟩ = ρ

∫ ∞

x−η(t)

f(z)dz (27)

σ2 = ρ

∫ ∞

x−η(t)

f2(z)dz (28)

5. TWO-TIME AUTOCORRELATION FUNCTION

We now calculate the two-time correlation function at posi-
tion x,

R(t1, t2;x) = ⟨V (x, t1)V (x, t2)⟩ (29)

For the constant velocity case we have

⟨V (x, t2)V (x, t1)⟩

=
N∑

n=1

N∑
k=1

⟨f(x− ct2 − xn)f(x− ct1 − xk))⟩ (30)

and following the same procedure as in the previous sections
one obtains

⟨V (x, t2)V (x, t1)⟩ =
N

a

∫ x−ct2+a

x−ct2

f(z)f(z + c(t2 − t1))dz

+
N(N − 1)

a2

(∫ x−ct2+a

x−ct2

f(z)dz

)(∫ x−ct1+a

x−ct1

f(z)dz

)
(31)

Taking the constant density limit one obtains

⟨V (x, t2)V (x, t1)⟩ = ρ

∫ ∞

x−ct2

f(z)f(z + c(t2 − t1)dz

+ ρ2
(∫ ∞

x−ct2

f(z)dz

)(∫ ∞

x−ct1

f(z)dz

)
(32)

Letting
t2 − t1 = τ (33)

we have

⟨V (x, t2)V (x, t1)⟩ = ρ

∫ ∞

x−ct2

f(z)f(z + cτ)dz

+ ρ2
(∫ ∞

x−ct2

f(z)dz

)(∫ ∞

x−ct1

f(z)dz

)
(34)

As expected, this is not a function τ, and hence the process is
not stationary. However, if we take the limit of large times

t2, t1 → ∞ (35)

but keeping (t2 − t1) a constant, then

⟨V (x, t2)V (x, t1)⟩ = ρ

∫ ∞

−∞
f(z)f(z + cτ)dz

+ ρ2
(∫ ∞

−∞
f(z)dz

)2

t2, t1 → ∞ ; t2 − t1 = τ

(36)
and we now see that the process becomes stationary.

6. TIME-VARYING SPECTRUM

Another fruitful approach is to calculate the time varying
spectrum. Here we use the Wigner spectrum and relate it
to the autocorrelation function. The time-frequency Wigner
distribution at position x, is defined by

W (t, ω, x)=
1

2π

∫ ∞

−∞
V ∗(x, t− 1

2τ)V (x, t+ 1
2τ)e

−iτω dτ

(37)
To deal with a nonstationary process [6–10] one takes the en-
semble average of Eq. (37)

W (t, ω;x)=
1

2π

∫ ∞

−∞

⟨
V ∗(x, t− 1

2τ)V (x, t+ 1
2τ)

⟩
e−iτω dτ

(38)
where W (t, ω;x)is called the Wigner spectrum which can be
thought of as the instantaneous spectrum at position x and
time t. The Wigner spectrum can be written as

W (t, ω, x) =
1

2π

∫ ∞

−∞
R(t+τ/2, t−τ/2;x)e−iτωdτ (39)

and inversely we have,

R(t+ τ/2, t− τ/2;x) =

∫ ∞

−∞
W (t, ω, x)eiτωdω (40)

and

R(t1, t2) =

∫ ∞

−∞
W

(
t1 + t2

2
, ω;x

)
e−i(t2−t1)ωdω (41)



Consider now the Wigner distribution for the pulse train
given by Eq. (1). Substituting Eq. (1) into Eq. (29) we have

W (t, ω;x)=

N∑
n=1

N∑
m=1

Wnm (t, ω;x) (42)

= NWnn(t, ω;x) +N(N − 1)Wnm (43)

where

Wnn =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f∗(x− ct− 1

2τ − xn)

f(x− ct+ 1
2τ − xn)P (xn) e

−iτω dτdxn (44)

and

Wnm =
1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f∗(x− ct− 1

2τ − xn)

f(x− ct+ 1
2τ − xm)P (xn)P (xm) e−iτω dτdxndxm (45)

Consider Wnn and where we consider the uniform distri-
bution, Eq. (8). We obtain

Wnn =
1

2π

∫ x−ct+a

x−ct

∫ ∞

−∞
f∗(z − 1

2τ) (46)

f(z + 1
2τ) e

−iτω dτdz (47)

The inner integral is simply the Wigner spectrum of the func-
tion f(z). Therefore we have

Wnn =
1

a

∫ x−ct+a

x−ct

W (z, ω)dz (48)

Now consider

Wnm =
1

2π

1

a2

∫ x−ct+a

x−ct

∫ x−ct+a

x−ct

∫ ∞

−∞

f∗(z − 1
2τ)f(z

′ + 1
2τ)e

−iτω dτdzdz′ (49)

=
1

a2

∫ x−ct+a

x−ct

∫ x−ct+a

x−ct

W

(
z + z′

2
, ω

)
ei(z

′−z)ω dzdz′

(50)
If we substitute these results into Eq. (43) and apply the limit
as in the previous sections we obtain

W (t, ω;x)= ρ

∫ ∞

x−ct

W (z, ω)dz

+ ρ2
∫ ∞

x−ct

∫ ∞

x−ct

W

(
z + z′

2
, ω

)
ei(z

′−z)ω dzdz′

(51)

7. WAVE TRAINS

In the above considerations we have taken the intensity to be
given by Eq. (1) but if f(t) are waves then the intensity and
the intensity squared are given, respectively, by

I(x, t) =

∣∣∣∣∣
N∑

n=1

f(x− ct− xn)

∣∣∣∣∣
2

(52)

and

I2(x, t) =

∣∣∣∣∣
N∑

n=1

f(x− ct− xn)

∣∣∣∣∣
4

(53)

Furthermore, f(t) can be complex. In this paper we consider
the real case. One can show that [14]

⟨I⟩ = N
[⟨
f2

⟩
+ (N − 1) ⟨f⟩2

]
(54)⟨

I2
⟩
= N(N − 1)(N − 2)(N − 3) ⟨f⟩4

+ 6N(N − 1)(N − 2) ⟨f⟩2
⟨
f2

⟩
+ 4N(N − 1) ⟨f⟩

⟨
f3

⟩
+ 3N(N − 1)

⟨
f2

⟩2
+N

⟨
f4

⟩
]

(55)

Consider first ⟨I⟩ . We can use the results obtained above
to immediately write, as per Eq. (17), that

⟨I⟩ = N

a

∫ x−ct+a

x−ct

f2(z)dz

+
N(N − 1)

a2

(∫ x−ct+a

x−ct

f(z)dz

)2

(56)

If we take the limit as given by Eq. (10) we have

⟨I⟩ = ρ

∫ ∞

x−ct

f2(z)dz + ρ2
(∫ ∞

x−ct

f(z)dz

)2

(57)

and further, the long time limit is

⟨I⟩ = ρ

∫ ∞

−∞
f2(z)dz + ρ2

(∫ ∞

−∞
f(z)dz

)2

(58)

The calculation for
⟨
I2
⟩

is more involved and we just give
the final answer,

⟨
I2
⟩
= ρ4

(∫ ∞

x−ct

f(z)dz

)4

+ 6ρ3
(∫ ∞

x−ct

f(z)dz

)2 (∫ ∞

x−ct

f2(z)dz

)

+ ρ2

 4

(∫ ∞

x−ct

f(z)dz

)(∫ ∞

x−ct

f3(z)dz

)
+3

(∫ ∞

x−ct

f2(z)dz

)2


+ ρ

(∫ ∞

x−ct

f4(z)dz

)
(59)



giving

σ2 = ρ

(∫ ∞

x−ct

f4(z)dz

)

+ 2ρ2

 2

(∫ ∞

x−ct

f(z)dz

)(∫ ∞

x−ct

f3(z)dz

)
+

(∫ ∞

x−ct

f2(z)dz

)2


+ 4ρ3

(∫ ∞

x−ct

f(z)dz

)2 (∫ ∞

x−ct

f2(z)dz

)
(60)

8. CONCLUSION

We derived an extension of Campbell’s theorem to non-
stationay situations. As with Campbell’s theorem, there
are a number of sensitive mathematical issues regarding
convergence and that will be addressed in a future paper.
One of the applications of the model we have given is to
the problem of reverberation which is often inherently non-
stationary [11–14]. This is the case if the scatterers, which
are spatially distributed, are excited by a pulse and therefore
the returns at a particular spatial point is a random process
where the function f(t) is proportional to the return from
each of the scatterers if indeed all the scatterers are the same.
If the scatterers are different then the stochastic process has
to be replaced by [11–14]

V (x, t) =

N∑
n=1

fn(x− ct− xn) (61)

where fn reflects the scattering of each scatterer. This
presents additional and very interesting issues which are
currently being investigated.
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