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ABSTRACT
In this paper, the set-theoretic based adaptive filtering task
is studied for the case where the input signal is nonstation-
ary and may assume relatively small values. Such a scenario
is often faced in practice, with a notable application that of
echo cancellation. It turns out that very small input values
can trigger undesirable behaviour of the algorithm leading to
severe performance fluctuations. The source of this malfunc-
tion is geometrically investigated and a solution complying
with the set-theoretic philosophy is proposed. The new algo-
rithm is evaluated in realistic echo-cancellation scenarios and
compared with state–of–the–art methods for echo cancella-
tion such as the IPNLMS and IPAPA algorithms.

Index Terms— Adaptive filtering, APSM, Improved pro-
portionate NLMS, echo cancellation

1. INTRODUCTION

Adaptive filtering and learning is among the most widely
employed signal processing tasks in numerous applications,
such as echo cancellation, channel equalization, prediction,
etc., [1]. The Least Means Squares (LMS) algorithm and
its normalized version (NLMS) are considered ‘classical’ in
adaptive filtering community, offering robust performance
with a very low computational complexity profile [1]. How-
ever, the convergence speed of the LMS, for a number of
applications, might be considered to be rather slow. As an
alternative, the Affine Projection Algorithm (APA), which
is essentially a generalization of NLMS, has gained much
attention. It deals with multiple data pairs in each adaptation
step, achieving faster convergence rates, albeit at the expense
of increased computational costs and potential instabilities,
due to the involved matrix inversions. For the cases of sparse
unknown parameter vectors, the first instance of sparsity
promoting online learning algorithm traces back more than
a decade ago, to the Proportionate Normalized Least Means
Squares (PNLMS) algorithm, applied to the echo cancellation
task, e.g., [2]. Since then, this basic scheme was improved,
[3], and extended to the Affine Projection Algorithm (APA)
rationale [4]. The fundamental idea behind proportionate-
based methods is to update each coefficient with a different
step size, which is made proportional to the magnitude of
the respective estimated coefficient. Recently, motivated by
advancements in Compressed Sensing, LMS variants regu-
larized with specially chosen penalties, e.g., [5] have been
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proposed as promising alternatives to proportionate updating
for sparsity promotion.

The goal of the previous classical adaptive filtering ap-
proaches, in one way or the other, is to find the minimizer
of a properly defined cost function. On the contrary, the set
theoretic estimation philosophy [6], as it is adjusted to com-
ply with the adaptive filtering case [7–11], is rather different.
Each single piece of information, which reveals information
concerning the position of the unknown parameter vector in
the Euclidean space, can be used for the design of a closed
convex subset of the space, which defines a region where, the
unknown parameter vector lies in, with high probability. The
goal of the set-theoretic estimation algorithms is to provide an
adaptation procedure which finds a point in the common in-
tersection of all the designed convex sets. Note also that, set-
theoretic formulations of the Improved PNLMS (IPNLMS)
and the improved proportionate APA (IPAPA) are able to cope
for sparsity as well [11].

Set-theoretic adaptive algorithms provide large flexibility
for the incorporation of a priori knowledge concerning the
task at hand. However, it turns out that in some very common
in practice situations, such as in echo cancellation, where the
norm of the input signal might admit very small values, the
performance degrades. To the best of our knowledge, a sys-
tematic way of tackling such a limitation has not been pro-
posed so far. This is the focus of our study. The kick off point
is the geometric investigation of the source of the problem
and then, a solution is proposed exploiting the rich toolbox of
projection operators accommodated by the set-theoretic esti-
mation rational and particularly the Adaptive Projected Sub-
gradient Methods (APSM).

2. PROBLEM DESCRIPTION

The adaptive filtering task based on the linear regression
model is considered. In particular, a vector a∗ ∈ RL, which
represents any unknown system or signal, is to be estimated
using measurements that are sequentially generated as fol-
lows:

yn = uT
na∗ + vn, ∀n ∈ N, (1)

where the superscript (·)T denotes the transpose of the respec-
tive vector. The model outputs (observations) (yn)n∈N ∈ R,
and the model input vectors (un)n∈N ∈ RL comprise the
measurement pairs (un, yn)n∈N, and (vn)n∈N is the noise
process. The objective of adaptive filtering algorithms is to
provide a sequence of estimates an aiming at achieving low
misadjustment, ∥a∗−an∥2

∥an∥2 , as fast as possible. Moreover, any
extra a-priori information regarding the structure of a∗, e.g.



the fact that it is sparse, should be effectively considered for
performance improvements.

Following the set-theoretic estimation rationale, for each
pair of data, which is obtained, a closed convex set is con-
structed, which contains the unknown vector with high prob-
ability. A popular choice for such a set takes the form of a
hyperslab around (un, yn), which is defined as:

Sn :=
{
x ∈ RL : |uT

nx− yn| ≤ ϵ
}
, ∀n ∈ N, (2)

for some user-defined tolerance ϵ ≥ 0, and for un ̸= 0. The
parameter ϵ determines, essentially, the width of the hyper-
slabs. Example of two hyperslabs are shown in Fig. 1. As
time evolves, new hyperslabs are formed and the true solu-
tion, a∗, is contained in the common intersection of all of
them. Any vector in the common intersection of all the sets,
which is refereed to as feasibility set, is considered to be an
acceptable solution. Therefore, the objective of the adaptive
set-theoretic algorithms is to converge to a vector that belongs
to the feasibility set.

3. THE ADAPTIVE PROJECTED SUBGRADIENT
METHOD

Fig. 1. APSM adaptation step

The goal of reaching a point in the feasibility set is
achieved by successively projecting the currently available
estimate, an onto the q (user-defined) more recently received
hyperslabs. An example with metric projections, PSj (an),
onto two hyperlsabs, Sj , j = n, n− 1, is depicted in Fig. 1.

Analytically, the Euclidean metric projection of an onto
Sj is given by,

PSj (an) = an +

{
ej(an)−sgn(ej(an))ϵ

∥uj∥2 uj , if |ej(an)| > ϵ,

0, otherwise
(3)

where, the error function ej(an) = yj−uT
j an and the sgn(·)

stands for the sign function. Starting from an arbitrary a1 ∈
RL, the APSM recursion step is given below:

an+1 := T

an + µn
1

q

 n∑
j=n−q+1

(PSj (an)− an)

 ,

(4)
A big advantage of the APSM framework is that via the oper-
ator T (·) in (4), a priori knowledge regarding the unknown

vector can be incorporated for performance improvements.
Examples of using such an operator when a∗ is known to be
sparse, i.e., most of its components equal to zero, is given
in section 5. The step–size µn can take any value in (0, 2)
or, when q > 1, convergence acceleration can be succeeded
paying for some extra computational cost by setting µn ∈
(0, 2Mn), with

Mn :=


∑n

i=n−q+1∥PSi
(an)−an∥2

∥
∑n

i=n−q+1 PSi
(an)−an∥2 ,∑n
i=n−q+1 PSi(an) ̸= an,

1, otherwise.

(5)

In this study, a modified APSM will be adopted, which
will be based on the distance between the current estimate
and the hyperslabs, d(an, Sj). This is a key concept that is
exploited later on and the basic APSM formula, (4), is rewrit-
ten using d(an, Sj) = ∥an−PSj (an)∥. For the case of errors
|ej(an)| > ϵ, we get:

d(an, Sj) =

∥∥∥∥ej(an)− ϵ sgn(ej(an))

∥uj∥2
uj

∥∥∥∥ (6)

=
|ej(an)− ϵ sgn(ej(an))|

∥uj∥
(7)

and when |ej(an)| ≤ ϵ, then d(an, Sj) = 0. Accordingly,
the APSM is rewritten as:

an+1 :=

T

(
an + µn

1

q

(
n∑

j=n−q+1

sgn(ej(an))d(an, Sj)
uj

∥uj∥

))
.

(8)

3.1. Case study: Input vectors with time varying statistics

In certain applications, where the statistics of the input vec-
tor vary with time, e.g., in echo cancellation, APSM as well
as the rest of set-theoretic based algorithms, may exhibit per-
formance fluctuations or even diverge in the case where the
noise is not bounded. Let us see this effect with a toy ex-
ample. The unknown vector is chosen to have L = 50 co-
efficients, all of them nonzero and randomly selected from
N (0, 1). The input vectors have been selected independently
at random from a Gaussian distribution and then they have
been normalized to have different Euclidean norm values. In
this way, we simulate an input with time varying statistics
and particularly varying norm. The norm of the input vec-
tor is constructed such as to have fixed norm for certain in-
tervals, starting with ∥u1∥ = 1 and then changing to values
0.1, 2, 0.3, 1, 0.5 at time instants 601, 1401, 2001, 3001, 3501.
Moreover, the unknown vector changes abruptly at time in-
stance 2500 and white Gaussian noise has been added. The re-
sults of this example are shown in Fig. 2, where all the partic-
ipating algorithms have been optimized with respect to their
free parameters and APSM uses q = 1. Of particular interest
is the performance of conventional APSM (dotted curve with
open circles) when compared with IPNLMS (curve denote by
asterisks). Apparently, APSM diverges from the true solution
whenever the norm of the input vector assumes low values.
This is also true, but to somewhat lesser degree, for other set-
theoretic algorthms, [9, 11] (curves denoted by crosses and
x-crosses).



Fig. 2. Toy example with time varying input norms

IPNLMS manages to cope well with the time varying in-
put vector via adequately tuning its regularization parameter,
denoted as δ. This parameter is added to the norm of the in-
put, which enters on the denominator of the update formula
([12]). Sometimes in bibliography, the IPNLMS regulariza-
tion parameter is recommended to be given a very small value
in order to avoid division by zero. However, in echo cancel-
lation community, the value βσ2

u, where β usually takes the
value 20 is adopted with σ2

u being the variance of the input
signal. It is fairly recently that the importance of δ was em-
phasized and a formula for its proper tuning was proposed
both for the case of NLMS and APA and their proportionate
counterparts [12, 13]. There it was indicated that without the
proper setup of this parameter, the misalignment of the adap-
tive filter may fluctuate a lot and may even never converge.

In the next section, the source that causes this fluctuations
problem is geometrically investigated and a solution is pro-
vided.

4. GEOMETRIC INTERPRETATION AND
SOLUTION

The theoretical analysis of the APSM has shown that in the
case of bounded noise, the algorithm converges monotoni-
cally arbitrarily close to the unknown vector with probabil-
ity 1, [14]. A prerequisite for this convergence guarantee is
that the hyperlabs are wide enough in order to include the
unknown parameter vector. However, whenever in practice
the noise is not bounded, e.g., in the additive white Gaus-
sian case, inevitably some of the hyperslabs that will be hit
by some large enough noise samples, be moved away from
the true parameter vector and and a∗ will no more be lo-
cated inside the formed hyperslab. From (1), (2), it is easy
to see that this is happening at all those time instances where
|vn| > ϵ. Such hyperlabs are hereafter referred to as missing
hyperlabs. It is clear, that the performance fluctuations prob-
lem discussed above concerns missing hyperslab only, since
in their absence, monotonic convergence is attained. Next, we
aim to figure out in which circumstances a missing hyperslab
is “problematic” and need to be treated with care in order to
avoid divergence from the true solution.

The missing hyperslabs can be characterised by their dis-
tance from the true unknown vector i.e.

d(a∗, Sj) =
|vj − ϵ sgn (vj)|

∥uj∥
, |vn| > ϵ, (9)

where (6) and the fact that ej(a∗) = yj − uT
j a∗ = vj has

been taken into account.
From (9), it is clear that for a missing hyperslab, Sj , its

distance from the ideal point a∗, is getting larger as long as
the norm of the input vector decreases. With respect to its
distance from the current estimate an, i.e., d(an, Sj), we can-
not say something concrete, however, when the algorithm has
converged or it is about to converge, meaning that the cur-
rent estimate an is close to a∗, then the distance d(an, Sj) is
likely to be getting larger with decreasing norms of the input
vector as well. Notice also from (8) that the APSM adaptation
step is proportional to this latter distance so if the hyperslab
is far from the true parameter vector, i.e. ∥un∥ is very small,
then the algorithm will make a large step towards a highly
misplaced hyperslab! Such hyperslabs are referred to as un-
reliable and they are the cause of the fluctuations observed in
the toy example of Fig. 2. On the contrary, when the hyper-
slab is either not missing or missing but still close to a∗, then
it is beneficial for the algorithm to make a long adaptation
step since it will bring the current estimate closer the the true
solution. These latter hyperslabs are called, here, reliable.

Briefly speaking, the solution proposed in this paper is
not to allow the unreliable hyperslabs to contribute much and
cause large steps in the adaptation formula (8). In order to
succeed in this, a proper use of relaxed projections T (λj)

Sj
(an)

in the place of metric projections PSj (an) is suggested. Such
a projection choice is realized for the first time in a APSM
setting. A relaxed variable metric projection onto a hyperlsab
is defined as follows:

T
(λj)
Sj

= I + λj

(
PSj − I

)
, (10)

where I is the identity mapping and λj ∈ (0, 2). Examples
of relaxed projections onto a hyperlsab are depicted in Fig.
1. For λj = 1 it coincides with the Euclidean projection,
whereas for λj values up to 1, the relaxed projection covers all
points from an up to Sj across the direction of the Euclidean
projection. When PSj in (8) is replaced with T

(λj)
Sj

yields

an+1 :=

T

(
an + µn

1

q

(
n∑

j=n−q+1

sgn(ej(an))d
T

(λj)

Sj

(an, Sj)
uj

∥uj∥

))
,

where, it is easy to show that d
T

(λj)

Sj

(an, Sj) = λjd(an, Sj).

It will be seen that the adoption of relaxed projections makes
it possible to eliminate systematically, via parameter λj , the
influence of hyperslabs which can be characterized as unre-
liable. To this end, the notion of unreliable hyperslab need
to be quantified. It is proposed to treat as unreliable all those
hyperslabs Sj , corresponding to ∥uj∥2 ≤ ρ, where ρ is a user
defined value. Suggestions for the choice of parameter ρ can
be found at the end of this section.

Note that the most distant, from a∗, hyperlabs, which still
remain reliable, are those having ∥uj∥ =

√
ρ. The actual

distance between a∗ and such a “most distant” hyperslab, de-
noted as d̄j , equals to

d̄j =
|vj − ϵ sgn vj |√

ρ
. (11)



In standard APSM, the maximum possible distance involved
in (8) is not bounded. Indeed, the unreliable hyperslabs in
standard APSM always lead to d(a∗, Sj) > d̄j and in the ex-
treme case of ∥uj∥ = 0, then d(a∗, Sn) = ∞. This explains
the reason why standard APSM leads to performance fluctua-
tions. In order to ameliorate such a problematic behavior, here
we propose the longest possible distance between the current
estimate and the relaxed projection onto any hyperslab uj ,
i.e., ∥T (λj)

Sj
− an∥ to be restricted to be equal to d̄j . More-

over, it is attempted via the relaxed projections, to achieve
the following, more robust behaviour; when ∥un∥ = 0, then
d
T

(λj)

Sj

(a∗, Sj) = 0 and for all the ∥un∥ values up to
√
ρ, the

distance d
T

(λj)

Sj

(a∗, Sn) should increase linearly and reach the

maximum value, d̄n. In order to succeed in the above, the re-
laxation parameter should be set equal to

λj = min

(
∥uj∥2

ρ
, 1

)
. (12)

Proof is simple but omitted due to lack of space.
We now turn our attention to the choice of ρ. First a hy-

perlsab (and the corresponding input vector) can be charac-
terized as reliable or not only with respect to the rest of the
hyperslabs. This means that in a situation where most of the
input vectors admit very small values or, equivalently, the in-
put signal have small variance, then ρ should be relatively
small and vice versa. As a result, ρ should be proportionate
to the input signal variance. Moreover, ρ, should also depend
on the SNR. When SNR is low, then, due to the increased
noise variance, assuming, for example Gaussian distribution,
the missing hyperlsabs are likely to appear more far from a∗
compared to a high SNR scenario. As a result, parameter ρ
should get smaller as long as SNR is getting larger. We have
observed, that the formula proposed in [13] for the NLMS
regularization parameter δ which, as it was discussed before,
plays a similar role with that of ρ and complies with the char-
acteristics discussed above. Accordingly, as a first attempt,
we adopted this formula adjusted for the APSM case by mul-
tiplying it with parameter q, i.e.

ρ =
qL(1 +

√
1 + SNR)

SNR
σ2
u, (13)

σ2
u is the variance of the input signal. Such a choice is fur-

ther encouraged by the tight relation underlying APSM and
NLMS. Indeed, it has been shown that when q = 1, ϵ = 0,
then NLMS coincides algorithmically with APSM [7]. As it
will be seen in the simulations section the adoption of (13)
leads to improved performance compared to IPNLMS (and
IPAPA for the q > 1 case). Although this ρ option is a safe
choice to use in practice, it does not mean that it is the opti-
mum one. Perhaps an other formula, which will incorporate
the peculiarities of APSM regarding the nonlinear nature of
hyperlabs, would perform even better. This is let for future
work.

In the toy example of Fig. 2, the performance of the pro-
posed algorithm is shown with the curve marked with squares.

4.1. Extension to variable metric relaxed projections

Next, the performance of the proposed method will be eval-
uated in echo cancellation. It should be stressed, that in or-
der to keep discussion simple and put emphasis on the nov-
elties of this work, the relaxed projections onto hyperslabs
were incorporated in the basic form of APSM involving Eu-
clidean projections. A more suitable version of APSM, which
fit well for the case of echo cancellation with sparse impulse
response, is the one that uses variable metric projections [15,
16]. In order to incorporate the proposed approach of relaxed
projections onto hyperslabs in the variable metric case, the
metric projection operator PSj (·) of (4) should be replaced
by the variable metric projection operator P

(Gn)
Sj

(·) of (3)
in [15] and multiplied by λj derived exactly as in (12). In
the simulation section that follows, matrix Gn of the vari-
able projections is diagonal with diagonal entries gn(i) =(

1−k
2L + (1 + k) |an(i)|

2∥an∥1

)−1

. This is equal to the weighting
used in IPNLMS. In this way, the proportionate philosophy is
incorporated in APSM framework. Parameter, k ∈ [−1, 1],
determines to which extend the sparsity will be taken into ac-
count [3]. Setting k = 0 is a commonly chosen option which
is also adopted here.

5. APPLICATION TO THE ECHO CANCELLATION

In the first example (Fig. 3), the low complexity implementa-
tions, i.e. the IPNLMS and the APSM with q = 1 are exam-
ined whereas in the second and more advanced one (Fig. 4),
the focus is on APSM implementations with q > 1, which are
evaluated against the improved proportionate APA algorithm.
In both examples, the input is real voice signals sampled at 8
KHz. Moreover, the SNR is fixed to 20 dB.

Fig. 3. Echo Cancellation example 1.

In Fig. 3, the unknown vector, a∗, has L = 1024 coef-
ficients and among them only S = 100 are non-zeros. All
the curves are the result of the ensemble average of 20 real-
izations and in each one of them the support of a∗ and the
values of the nonzero components are randomly generated.
The dashed curve exhibiting the worse performance corre-
sponds to standard APSM, which takes no care for low in-
put norms, and the solid curve marked with open circles is
the proposed APSM employing relaxed instead of Euclidean
projections onto hyperslabs. Asterisks indicate the IPNLMS



curve, which performs slightly worse than the proposed one.
Interestingly, (see curve with diamonts), a further improve-
ment against IPNLMS is succeeded when APSM not only
uses relaxed projections based on ρ, but also when it simulta-
neously adopts the same regularization as that employed by
IPNLMS. In the case of APSM corresponds to adding the
IPNLMS δ value in the denominator of (3). Finally, a sig-
nificant boost in performance is achieved when the operator
T (·) in APSM adaptation rule is replaced with a Generalized
Thresholding (GT), [17] and particularly the adaptive TSl0

as
it is defined in [18]. This latter method need a rough estimate
of the sparsity level, e.g. in the specific example a value twice
as large as the true one, i.e. Ŝ = 200, was given. Moreover,
the parameter β (see [18]), was set equal to 10, however, any
value between 5 to 20 would roughly lead to the same results.

Fig. 4. Echo Cancellation example 2.

In Fig. 4, two abrupt changes are taking place splitting
the example to 3 distinct parts. In the first part, the unknown
vector is as those used in Fig. 3, in the second part, is the
4th echo path of the G168 Recommendation and in the last
part the components are continuously varying with time. The
dashed curve corresponds to the conventional APSM exhibit-
ing even larger fluctuations compared to those observed in
Fig. 3. The IPAPA performance curve is solid, marked with
asterisks and the curve of the APSM with relaxed projections
is marked with circles. Once again, as it is shown with the
curve marked with diamonds, performance improvement is
achieved when GT is employed. Finally, the curve with x-
crosses shows the result when GT is used but instead of the
method proposed here, the tactic to seize adaptation when-
ever ∥u∥2 fall bellow a certain value is followed. The latter
approach has been adopted in [19]. A big disadvantage is that
there is not any formula or rule of thumb for the tuning of
this parameter, therefor here, it was hand-tuned in order the
achieve good performance with limited fluctuations. It is ob-
served that even though it is not performing as well as the
proposed one, in the first part it achieves a fairly close perfor-
mance. However, in the second part a much slower conver-
gence speed is observed.

In all the cases above, APSM processes 10 data pairs con-
currently, i.e. q = 10, whereas IPAPA uses q = 5. Note how-
ever that when comes to APSM, its complexity scales linearly
with q, specifically O(qL), in contrast to IPAPA which has
complexity O(q2L). As a result in this example, the proposed

APSM (without GT) is roughly half as complex as IPAPA. On
top of that, the APSM framework allows the employment of
subdimentional projections which are able to further decrease
complexity without affecting performance [20].
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