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ABSTRACT
In this paper, we introduce a non-parametric 2-D spectral es-
timator for smooth spectra, allowing for irregularly sampled
measurements. The estimate is formed by assuming that the
spectrum is smooth and will vary slowly over the frequency
grids, such that the spectral density inside any given rectan-
gle in the spectral grid may be approximated well as a plane.
Using this framework, the 2-D spectrum is estimated by find-
ing the solution to a convex covariance fitting problem, which
has an analytic solution. Numerical simulations indicate the
achievable performance gain as compared to the Blackman-
Tukey estimator.

Index Terms— 2-D frequency estimation, smooth spec-
trum, irregular sampling.

1. INTRODUCTION

Limited attention has been dedicated to the problem of finding
estimators of smooth spectra, especially when formed from
irregularly sampled data. In contrast, a vast number of con-
tributions have been made on the estimation on sparse spec-
tra, including 2-D spectra, e.g., [1–4]. Recently, in [5, 6], a
smooth spectral estimator was introduced, assuming a piece-
wise linear spectral density and formulating the spectral esti-
mation as a maximum likelihood optimization. We expanded
on this idea in [7], where we allowed for (non-uniformly sam-
pled) time-varying signals, forming a smooth time-frequency
representation of the signal. In this work, we further this de-
velopment, proposing a non-parametric estimator of smooth
2-D spectra. To incorporate the assumption of smoothness,
we expand on the piecewise linear assumption in [5, 6] to in-
stead assume each 2-D frequency rectangle to be well rep-
resented as a plane. Forming a transformation tensor over
the frequency grid, a covariance representation of the smooth
spectrum is formed, which is then fitted to a covariance esti-
mate based on the data. Different from many other forms of
spectral estimators, such as, for instance, ARMA based es-
timators, the proposed method does not require any a priori
model order information.

The remainder of the paper is organized as follows: In the
next section, we introduce the assumed data model including
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our smoothness assumption. Then, in section 3, we formulate
the proposed spectral estimate, followed, in section 4, by the
derivation of the analytic solution. Finally, we conclude, in
section 5, by illustrating the achievable performance of the
proposed estimator.

2. DATA MODEL

Consider a stationary signal y(t, s), where t = t0, . . . , tNt�1

and s = s0, . . . , sNs�1 denote the (possibly non-uniform)
sampling times, having a two-dimensional spectrum denoted
�(!1,!2). Furthermore, the spectrum is assumed to be band-
limited within [�B1, B1] and [�B2, B2], as well as being
alias-free and smooth. Any frequency point, (!1,!2), in the
spectrum is assumed well modeled as
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where !n,j and !n,j+1 are the closest two points in the n:th
dimension, for n = 1 and 2, and with �1 and �2 denoting the
width of the first and second frequency grid surface, respec-
tively. In other words, any point inside a rectangle in the grid
structure is assumed to lie on the plane defined by the lower
left three corners of the rectangle. Furthermore, the covari-
ance function is defined as

R(⌧1, ⌧2) =

Z B1

�B1

Z B2

�B2

� (!1,!2) e
i!1⌧1+i!2⌧2d!1d!2

(2)
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Fig. 1: Example of the proposed grid structure. The figure
on the left shows the grid structure that the frequency plane
is divided into. Each point inside a rectangle is assumed to
lie on the plane defined by the lower left three corners. The
right figure shows the corresponding structure on a 2-D power
spectrum.

3. SMOOTH 2D SPECTRAL ESTIMATOR

In order to form the smooth spectral estimate, the 2-D spec-
tral plane is divided into a grid structure with M1 ⇥M2 grid
points. An example of such a grid structure can be seen in Fig-
ure 1. The smaller values of M1 and M2 that are assigned, the
smoother one assumes the spectrum to be. The spectrum is es-
timated by minimizing the distance between the correspond-
ing covariance function and a transform of the spectrum in the
correlation domain. Combining (1) and (2) together with the
fact that the rectangles in the grid structure are disjoint, al-
lowing for the double integral to be divided into a double sum
over the gird structure, yields (13), given at the top of the next
page. The transform from the frequency domain to the corre-
lation domain is thus constructed from the coefficients in (13).
One may find the transform by identifying each coefficient
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where it should be noted that the integrands are separable in
terms of !1 and !2. These can then be sorted into four differ-
ent cases, being
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Using these, one obtains

F j,k =

8
>>><

>>>:

�2(1, j)�1(2, k) if ⌧1 = ⌧2 = 0

�2(1, j)�3(2, k) if ⌧1 = 0, ⌧2 6= 0
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Collecting the terms from (3)-(12) into one transform tensor
Cj,k, the covariance structure in (13) may be expressed as

R(⌧1, ⌧2) =

M1X

j=1

M2X

k=1

Cj,k�(!1,j ,!2,k) (14)

Using this smooth and band-limited version of the Fourier
transform, one may form a 2-D spectral estimate by express-
ing it as a covariance fitting problem. By minimizing the dis-
tance between an initial covariance function estimate, ˆR, and
the covariance function evaluated with the transform, one may
formulate the problem as

minimize
�

���� ˆR�
X

j

X

k

Cj,k�
����2
F

(15)

subject to �� �1� = 0

����2 = 0

where
���� ·
����
F

denotes the Frobenius norm, and �` is an ex-
change matrix of dimension (M` + 1)⇥ (M` + 1), for ` = 1

and 2. The two constraints in (15) ensures that the spectral
estimate is mirrored in both dimensions and can be dropped
if the signal is complex valued.
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4. SOLVING THE OPTIMIZATION PROBLEM

We proceed by introducing an approximate formulation of
(15), which creates more robustness in the estimate

minimize
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where �1 and �1 are regularization parameters. Since all the
terms in (16) are convex the problem is convex, thus there is a
matrix Z⇤ that minimizes (16). Furthermore, all the terms in
(16) are differentiable which indicates that a analytic solution
may be available. One problem with finding the solution is
that Z is multiplied from the right in the second term and from
the left in the third term of (16). To eliminate this problem,
we proceed by rewriting the problem on vector form. Let
z = vec(Z) and Rv = vec(R), where vec(·) denotes the
vectorization operator, stacking the columns of the matrix on
top of each other, and let

H(1)
= Cv (17)
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where IM`+1 is the (M` + 1)⇥ (M` + 1) identity matrix for
` = 1 and 2, (·)T denotes the transpose, Cv is C rearranged
to account for the vectorization of ˆR and Z, and ⌦ denotes
the Kronecker product. We may now write (16) as
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Differentiating (20) with respect to z and putting it equal to
zero yields
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Solving (21) for z yields
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The regularization parameters �1 and �2 governs the symme-
try in the two frequencies dimensions, i.e., the larger value
the more symmetry. We coin the resulting estimator the
Covariance-fitting Approach for smooth Two-dimensional
Signals (CATS).

5. NUMERICAL RESULTS

We proceed to examine the performance of the proposed
CATS method by testing it on simulated 2-D data and com-
paring it to the Blackman-Tukey (BT) estimate, defined as

ˆ�BT (!1,!2) = �0(!1,!2) ?H(!1,!2) (24)
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and with ? denoting convolution, where H(!1,!2) is the
spectral representation of the two-dimensional separable
composition of Blackman windows, such that (the corre-
sponding time window)

h(j, k) = h1(j)h2(k) (26)

with

h`(k) = 0.42 + 0.5 cos
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The considered data is formed as a 2-D ARMA(p1, p2, q1, q2)
process defined as

y(t, s) = �
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ak,my(t� k, s�m)
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+

+
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bk,me(t� k, s�m) (27)
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Fig. 2: The figure show the three discussed examples, one on each row, with the leftmost figure showing the true spectrum, the
middle the Blackman-Tukey, and the rightmost the estimate obtained by the proposed CATS estimator.

where ak,m and bk,m are the ARMA coefficient, and e(t, s)
is a 2-D Gaussian white noise with variance �2. The 2-D
spectrum of y(t, s) is thus given as

�y(!1,!2) =

��Pq1
k=0

Pq2
m=0 bk,me�i(k!1+m!2)

��2
��Pq1

k=0

Pq2
m=0 ak,me�i(k!1+m!2)

��2
�2 (28)

In all simulations, the regularization parameters of (16) are
set to �1 = �2 = 1. In the first example, the simulation
was done using regularly sampled data. Table 1 shows the
resulting performance of the proposed estimator as compared
to the BT estimate, obtained using for 100 Monte-Carlo runs,
where the distance to the true spectrum was measured in three
different ways, namely using the mean squared error (MSE)
defined as
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where N!1 and N!2 are the number of frequency points in the
BT estimate. Furthermore, the Hausdorff distance is defined
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The proposed methods is evaluated using three different data
sets. In all three cases the observed data is of dimension
(50 ⇥ 45), from which the covariance function estimate is
formed. The proposed method estimates the spectrum over a
grid of size (6 ⇥ 6), and BT uses a window of size 15 (this
was found to yield the best achievable performance of all ex-
amined windows). The first row of Figure 2 shows a typ-
ical realization of the two estimators, where the leftmost is
the true spectral density, the middle one depicts the BT esti-
mate, whereas the rightmost shows the result of the proposed
method. The corresponding error measures can be seen in



CATS Blackman-Tukey
MSE 0.0216(±0.0064) 0.0904(±0.0105)

Hausdorff 1.5098(±0.2945) 3.3773(±0.1992)
Log-SD 0.6275(±0.0919) 1.6365(±0.1062)

MSE 0.0876(±0.0367) 0.0634(±0.0098)
Hausdorff 2.4324(±0.6795) 3.0231(±0.1732)
Log-SD 1.4402(±0.3371) 1.8810(±0.1257)

MSE 0.0597(±0.0195) 0.0997(±0.0117)
Hausdorff 2.7433(±0.5706) 3.5013(±0.2417)
Log-SD 1.1567(±0.2140) 1.6601(±0.1090)

Table 1: The mean estimation error of the spectral estimators
in three different measures for the three examples. The stan-
dard deviation is given in parenthesis. The top two groups are
the results for two different spectral densities estimated from
regularly sampled data. The lower group are the results for
the third example where the data is observed irregularly.

the top group in Table 1, where the proposed method clearly
outperforms the BT estimates. We proceed to examine an al-
ternative spectrum containing a low-frequency tone, as shown
in the second row of Figure 2. As seen in the middle part of
Table 1 and Figure 2, the proposed method outperforms the
BT estimator in the Hausdorff and Log-SD measure, but not
in MSE, although the results are similar. Finally, we examine
the performance on irregularly sampled data, with the result-
ing spectral densities depicted in the third row of Figure 2.
The data was simulated by randomly removing half of the
columns and rows of the data matrix. The lower part of Ta-
ble 1 and the third row of Figure 2 show the results, where one
can see that the proposed method has lowered its performance
but is yielding clearly preferable performance as compared to
the BT estimator.
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