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ABSTRACT

The current work tackles the detection and localization of a
diffusive point source, based on spatially distributed concen-
tration measurements acquired through a sensor network. A
model-based strategy is used, where the concentration field is
modeled as a diffusive and advective-diffusive semi-infinite
environment. We rely on hypothesis testing for source detec-
tion and maximum likelihood estimation for inference of the
unknown parameters, providing Cramér-Rao Lower Bounds
as benchmark. The (non-convex and multimodal) likelihood
function is maximized through a Newton-Conjugate Gradient
method, with an applied convex relaxation under steady-state
assumptions to provide a suitable source position initializa-
tion. Detection is carried out resorting to a Generalized Like-
lihood Ratio Test. The framework’s robustness is validated
against a numerically simulated environment generated by the
Toolbox of Level Set Methods, which provides data (loosely)
consistent with the model.

Index Terms— Diffusive Source Localization, Maximum
Likelihood Estimator, Newton-Conjugate Gradient, General-
ized Likelihood Ratio Test, Sensor Network

1. INTRODUCTION

The subject of diffusive source localization, or more gen-
erally, diffusive phenomena parameter estimation, has been
mostly covered during the last decade. Focusing on methods
that allow detection and estimation of a continuous source
location in a diffusive and advective environment, the two
most common approaches are estimation resorting to a Max-
imum Likelihood Estimator (MLE) or an Extended Kalman
Filter (EKF). The MLE provides modeling flexibility which
potentially enables more complex scenarios to be tackled, but
requires an analytical solution to the governing Partial Dif-
ferential Equation (PDE) that may be difficult to determine
and a generally non-linear optimization problem [1]. The
EKF approach requires a linear approximation with respect
to the variables of interest followed by discretization for its
state-space formulation, which can be challenging to derive
in closed form [2]. In a conceptually different approach,
Lu et al. [3] showed that the diffusive field generated by an
impulsive point source is described, at different points in
space, by scaled and shifted replicas of a single prototype
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function, whose properties enable the source parameters to
be determined through a set of linear equations.

In our work, source detection and localization is achieved
through the implementation of a detection and estimation
framework, relying on data gathered by a Sensor Network
(SN). Although the approach is generally based on [1], in this
paper we actually cover all the required aspects to make the
framework operational and contribute with a new method to
address the (crucial) initialization of the optimization prob-
lem. The framework is governed by two distinct phases or
operation modes. In the first phase, the source is assumed to
start at an inactive state and the main focus is to accurately
detect its transition to an active state. The detector requires
estimates under both absent and active source hypotheses and
the former are continuously refined until detection triggers.
In the second phase, after the source has been detected, all
the newly gathered data is used to refine the parameters’
estimates under the active source hypothesis. [4]

The rest of the paper is organized as follows: Section 2 in-
troduces the governing equations for diffusive and advective-
diffusive environments; Section 3 presents the MLE based
estimator and Cramér-Rao Lower Bounds (CRLBs); Section
4 covers the optimization problem and the convex relax-
ation approach used for initialization; Section 5 is dedicated
to detection resorting to a Generalized Likelihood Ratio
Test (GLRT); Section 6 illustrates the framework’s perfor-
mance in simulation and sensitivity to parameters’ variation
are tested; Section 7 sums up the work developed.

2. PHYSICAL MODELING

The environmental model is constrained by the following as-
sumptions: a single fixed point source is considered, with
known vertical coordinate (at ground level), that upon acti-
vation will release mass continuously at a constant rate; the
medium is semi-infinite over a flat horizontal surface bound-
ary (the floor), devoid of any physical obstacles; it has an un-
known constant diffusion coefficient, which incorporates the
contributions from both molecular and turbulent diffusion, as
discussed in [1]; the wind flow is uniform and known (ex-
ternally measured); buoyancy and gravity effects are negli-
gible; the substance of interest is immune to chemical and
other physical transformation processes; all sensors’ positions
are known and sampling occurs synchronously, with positions
and timestamps assumed to be error free.



2.1. Diffusive Model

Let ~r = [rx, ry, rz ]
T denote s position vector in a three di-

mensional frame of reference and c(~r, t) designate a given
substance’s concentration, as a function of space and time,
and k to refer to the diffusion coefficient. From Fick’s law of
diffusivity and the continuity equation

∂c(~r, t)

∂t
= k∇2c(~r, t). (1)

Assuming a single point source that activates at t0 [s] and
starts releasing mass at a constant rate µ [Kg/s], placed at the
boundary of a semi-infinite medium, such that rz = 0 [m],
leads to a slight modification to the solution presented in [1].

c(~r, t) =
µ

2πk|~r − ~rs|
erfc

(

|~r − ~rs|

2
√

k (t− t0)

)

. (2)

The source position, denoted by ~rs, and its mirror image over-
lap. The function erfc stands for the complementary error
function, defined as erfc (g) = 2√

π

∫∞
g

exp
(

−h2
)

dh.

2.2. Advective-Diffusive Model

When the influence of wind is considered, another term must
be added to (1)

∂c(~r, t)

∂t
= k∇2c(~r, t)−∇ · (c(~r, t)~υ) . (3)

Considering the stated assumptions, now incorporating the
uniform wind flow, yields an expression similar to the one
derived in [1], once more exploiting the fact that the source
and its mirror image positions are equal

c(~r, t) =
µ

4πk|~r − ~rs|
exp

(

(~r − ~rs) · ~υ

2k

)

×

[

exp

(

|~r − ~rs||~υ|

2k

)

× erfc

(

|~r − ~rs|

2
√

k (t− t0)
+ |~υ|

√

t− t0
4k

)

+exp

(

−
|~r − ~rs||~υ|

2k

)

× erfc

(

|~r − ~rs|

2
√

k (t− t0)
− |~υ|

√

t− t0
4k

)]

.(4)

2.3. Measurement Model

The SN considered is composed of multiple individual chemi-
cal sensors, capable of measuring point concentrations at their
placed location. The measurement model used was the one
proposed in [1].

y (~r, t) = c (~r, t) + b+ e (~r, t) . (5)

Equation (5) comprises following terms: y (~r, t) is the mea-
sured value reported by the sensor; c (~r, t) is the concentra-
tion of the substance of interest present at the sensor; b is the
sensor bias, considered to be spatially uniform and time in-
variant, included as a way to represent the sensors’ sensitivity
to undesirable substances; e (~r, t) represents zero mean white
Gaussian measurement noise, with unknown variance σ2

e , in-
dependent between sensors.

3. PARAMETER ESTIMATION

From the models governing the physical phenomena of inter-
est, the lumped parameter vector comprises [rsx , rsy , k, t0, µ,

b, σ2
e ]

T with: rsx and rsy as the source’s horizontal coordi-
nates; k as the total diffusivity coefficient; t0 as the activation
instant; µ as the source release rate; b as the sensor bias; σ2

e

the noise variance.

3.1. Maximum Likelihood Estimator

Recall (5) and consider m sensors, whose locations are all
known, that perform n measurements: y (~ri, tj), 1 ≤ i ≤ m,
1 ≤ j ≤ n. y will be a (mn)-dimensional vector whose
(m (j − 1) + i)th component will be y (~ri, tj). Extend the
same reasoning to the noise vector e. As highlighted in [1],
at least three sensors and samples acquired at two different
instants are required to determine the source location. Re-

arranging the parameter vector as
[

θT , xT , σ2
e

]T
, where x =

[µ, b]
T

and θ = [rsx , rsy , k, t0]
T , we can write

y = A (θ) x + e, (6)

A (θ) = [a (θ) 1] . (7)

The spatial and temporal dependence are omitted to stream-
line the notation. In (7), each element of a (θ), aij (θ) =
c(~ri, tj , θ)/µ. The symbol 1 denotes a (mn)-dimensional
vector of 1’s. The maximum likelihood estimates can be de-
termined through [1]

θ̂ = arg max
θ

{

yT PA(θ)y
}

, (8)

x̂ =
[

AT (θ̂)A(θ̂)
]−1

AT (θ̂)y, (9)

σ̂2
e = (mn)−1yT P⊥

A (θ̂)y. (10)

where PA(θ) and P⊥
A (θ) stand for the projection matrix and

the complementary projection matrix on the column space of
A(θ), respectively.

PA(θ) = A(θ)[AT (θ)A(θ)]−1AT (θ), (11)

P⊥
A (θ) = I − PA(θ), (12)

where I denotes the identity matrix. As shown in [1] the
Maximum Likelihood (ML) estimate for the vector of nonlin-
ear parameters, θ, is equivalently given by

θ̂ = arg max
θ

L (θ),

L (θ) =
[(yT a(θ)) − (mn)−1(1T y)(1T a(θ))]2

(aT (θ)a(θ)) − (mn)−1(1T a(θ))2
. (13)
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(a) Source rsx coordinate

300 400 500 600 700 800 900 1000
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time [s]

C
R

L
B

( 
r s

y

)

 

 

Dif
Adv−Dif

(b) Source rsy coordinate

300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

C
R

L
B

( 
k
 )

 [
m

2
/s

]

 

 

Dif

Adv−Dif

(c) Diffusivity k
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(d) Source initial release time t0

Fig. 1: Cramér-Rao lower bounds (square root) for θ under a
diffusive (solid line) and an advective-diffusive (dashed line)
environment.

3.2. Cramér–Rao Lower Bound

The CRLBs derived in [1] are given by

CRLB(θ) =
σ2
e

µ2
{DT (θ)P⊥

A (θ)D(θ)}−1, (14)

CRLB(x) = σ2
e{AT (θ)P⊥

D (θ)A(θ)}−1, (15)

CRLB(σ2
e) =

2σ4
e

mn
, (16)

with (mn× 4) dimensional matrix D = ∂a(θ)
∂θ

. A simulation
was composed to display the lower bounds. The conditions
were: 1000 [s] simulation duration, in either a diffusive and
an advective-diffusive environment, with k = 25 [m2/s] and
~υ = [1, 1, 0]T [m/s]; source placed at ~rs = [45, 45, 0]T [m],
that initiates its release at t0 = 200 [s], at a constant rate of
µ = 1 [Kg/s]; nine sensors placed on a uniform grid at rxi

∈
{25, 50, 75} [m], ryi

∈ {25, 50, 75} [m] and rzi = 0 [m],

subject to a bias of b = 1×10−4 [Kg/m3] and Gaussian noise
error with standard deviation σe = 2 × 10−6. The sampling
interval is ∆t = 10 [s]. Figure 1 shows the evolution of the
CRLBs. The values shown are the square roots of the com-
puted bounds. The bounds are lower for the source location
parameters in the pure diffusive case and lower for the remain-
ing parameters in the advective-diffusive case. Therefore, it
should result in potentially better estimates for the source lo-
cation under pure diffusive conditions and better estimates
for the remaining parameters under advective-diffusive con-
ditions. These bounds were achieved over an average Signal-
to-Noise Ratio (SNR) of SNRD = 44.46 [dB] and SNRAD =
44.05 [dB] for the diffusive and advetive-diffusive cases, re-
spectively.

4. LIKELIHOOD FUNCTION MAXIMIZATION

In this section we describe our iterative approach for maxi-
mizing the likelihood function, as well as the crucial initial-
ization procedure. The former topic was covered only super-
ficially in [1], whereas the latter is very different from what
was proposed in that work. The function L (θ) is multimodal,
requiring good-quality initialization to reach a suitable maxi-
mum (hopefully a global one). The feasible set is bounded by
k > 0 and t − t0 > 0, since the diffusivity loses its physical
meaning if the value is nonpositive, and (2), (4) are not valid
prior to source activation. As commonly done in the litera-
ture, maximization of L (θ) is converted into minimization
of f(θ) = −L (θ). An iterative line search strategy using the
Armijo backtracking for step control [5] is used. At iteration
κ, with parameter vector θκ and descent direction dκ, the step
β is chosen such that

f(θκ + β dκ) ≤ f(θκ) + δ β∇f(θκ)T dκ. (17)

The δ term is a constant that allows to further specify the rate
of descent. Backtracking was exploited to ensure that iter-
ates always remain in the feasible set for k and t0. The step
is initialized with β = 1 as is common when in Newton or
Quasi-Newton methods. The descent direction dκ is chosen
through a Newton-Conjugate Gradient (CG) method [5] solv-
ing

minimize
dκ

‖rκ‖ (18)

subject to rκ = ∇2f(θκ)dκ +∇f(θκ) (19)

‖rκ‖ ≤ ηκ‖∇f(θκ)‖̺. (20)

Whenever possible, ̺ = 2 in (20) ensures quadratic conver-
gence .

4.1. Initialization

Good-quality initialization of the iterative likelihood maxi-
mization algorithm is required to obtain desirable estimates
of the source parameters. The proposed initialization method
exploits the link between a stationary diffusive field and the
propagation model used for localization of radio sources
based on received power [6, 7], capitalizing on known ac-
curate and convex (hence globally convergent) formulations
for the latter problem. Despite the stationary assumption, in
practice the method provides sufficiently accurate estimates
of the source position when fed non-steady state concentra-
tions, as demonstrated by our numerical results. Assuming
a solely diffusive case and that enough time has passed to
achieve a stationary regime, (2), (5)

y(~ri,∞) =
µ

2πk‖~ri − ~rs‖
+ b+ e. (21)

The parameter ~ri is only two dimensional in this case. Squar-
ing both left and right sides of the equations and lumping to-
gether all cross multiplicative and second order terms involv-
ing the bias and Gaussian error into a new error term denoted
by ε,

ci =
cs

‖~ri − ~rs‖2
+ ε, (22)



where ci = y(~ri,∞)2 and cs = (µ/2πk)2. Adopting a Least
Squares estimator

~̂rs = arg min
~rs,cs

∑

i

(

ci‖~rs − ~ri‖
2 − cs

)2
. (23)

The term cs is treated as an additional optimization variable
allowing it to absorb modelling differences from using (21) in
a non stationary situation and from neglecting the bias term.
It also avoids the need for knowing µ and k in advance. Sim-
ilarly to the procedure performed in [6], it is reasonable to
assume that with small enough residual error the l2 norm min-
imized on (23) can be approximated by the l1 norm leading
to

~̂rs = arg min
~rs,cs

∑

i

∣

∣ci‖~rs − ~ri‖
2 − cs

∣

∣ . (24)

Defining the auxiliary variable z such that

‖~rs − ~ri‖
2 = z − 2~rs

T ~ri + ~ri
T ~ri, (25)

z = ~rs
T ~rs, (26)

we can relax (24) as a semidefinite program

minimize
~rs,cs,hi,z

∑

i

hi (27)

subject to − hi ≤ ci(z − 2~rs
T ~ri + ~ri

T ~ri)− cs ≤ hi

(28)

z ≥ ~rs
T ~rs, (29)

solved resorting to available general-purpose convex solvers.
Even thought ~rs and cs are both obtained from (27)-(29), we
found that only the former has enough quality to initialize the
Newton-CG method. Attempts to extract k from cs proved to
be unreliable due to the approximation errors introduced. The
most significant ones are: t ≪ ∞ thus erfc 6= 1; the bias term
being inadequately neglected. In the context of initialization
the advective-diffusive case is treated as solely diffusive and
initialized similarly, exploiting the idea that the modelling dif-
ferences should not be significant enough to corrupt the esti-
mates up to a certain wind speed. The diffusivity and initial
release time parameters were coarsely initialized: the former
through the use of a constant value k = 10, close to the ones
used in [1]; the latter was initialized as t0 = t1 −∆t, where
∆t is the sample time, relying on an assumption of a higher
probability of source activation moments prior to the earli-
est timestamp of the measurements included in the likelihood
function.

5. DETECTION

Detection enables the differentiation between the inactive and
active states of the source and defines when the shift in the
framework’s operating mode occurs. The case at hand is one
of a binary hypothesis. Consider H0 as the null hypothesis
or absent source, and H1 as the alternate hypothesis or ac-
tive source. The lack of prior probabilities for both hypothe-
sis, p(H0) and p(H1), precludes a Bayesian formulation. We

adopted the Neyman Pearson approach with the intent of max-
imizing the probability of detection PD for a given probabil-
ity of false-alarm PFA. Both the signal and noise probability
density functions have unknown parameters. The Generalized
Likelihood Ratio Test (GLRT) is commonly used to tackle
parametric detection problems such as this one, and usually
performs well. The statistical test is given by

LG(y) =
p(y; φ̂1,H1)

p(y; φ̂0,H0)

H1

≷
H0

γ, (30)

where φ̂1 = [rsx , rsy , k, t0, µ, b1, σ
2
e1
]T and φ̂0 = [b0, σ

2
e0
]T

are determined by the MLE under H1 and H0, respectively.
Since the MLEs under H1 and H0 do not yield the same re-
sults, a subscript is added to b and σ2

e to clarify the corre-

spondent hypothesis. φ̂1 is estimated through (8)-(10) and

to determine φ̂0 one must take into account that under H0,

P (y(~r, t)) = N (b0, σ
2
e0
), therefore b̂0 = (mn)−1yT1 and

σ̂2
e0

= (mn)−1(y− b̂01)
T (y− b̂01). Using all gathered obser-

vations indiscriminately can result in corrupt estimates under
H1 since the estimator cannot cope with observations prior
to the source activation, resulting in an incorrect bounding of
the solution space along t0. Given that the activation instant is
not known, one is forced to make a guess. This situation was
tackled employing RANdom SAmple Consensus (RANSAC)
and selecting the best candidate for the activation instant. The
best n0 is the one for which the best correspondence is ob-
tained between real and expected measurements at the sen-
sors, based on the computed estimates. Having picked n0,
(30) assumes the form

LG(yn0+1:n) =

(

σ̂2
0

σ̂2
1

)

n−n0

2

exp

(

‖yn0+1:n − b̂01‖2

2σ̂2
e0

−
‖yn0+1:n − (a(θ̂)µ̂+ b̂11)‖

2

2σ̂2
e1

)

. (31)

PFA =

∫

{y:LG(y)>γ}
p(y;H0) dy = τ. (32)

The term γ is a threshold dependent on the false-alarm proba-

bility PFA, given by (32). The non-linear dependence on a(θ̂)

and statistical dependence of θ̂ on y makes it difficult to deter-
mine the threshold in closed form; therefore, a Monte Carlo
simulation was conducted to numerically estimate it, follow-
ing the rule of thumb of 100/PFA runs mentioned in [1].
An experiment was assembled for the simulation, defined in
Section 3.2, allowing the following differences: under H0

the source is never active and under H1 the source activates
at t0 = 0 [s]. The collected measurements were taken at
{10, 20, 30, 40} [s]. The target was PFA = 0.01 for a to-
tal amount of 104 runs. The empirical Cumulative Distribu-
tion Functions (CDFs) of the statistical test LG(yn0+1:n) un-
der both hypotheses are displayed in Figure 2. The values
for LG(yn0+1:n) under advective condition are considerably
lower in comparison with pure diffusive conditions. Despite
being able to work with the entire set of observations, a mov-
ing window approach should be used, otherwise LG(yn0+1:n)
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Fig. 2: Empirical CDF of the statistical test (31), computed
from multiple simulation runs. In half the simulations there
was no source in the environment (H0) and in the remaining
ones a source was present (H1). The detection threshold γ,
chosen as a function of the false alarm probability PFA, is
picked from the obtained CDF.

can overflow due to the exponential dependence of (σ̂2
0/σ̂

2
1)

on the window size. The number of required samples directly
relates to the SNR inherent to the problem.

6. SIMULATION ENVIRONMENT, RESULTS AND
DISCUSSION

The simulation environment was provided by the Toolbox
of Level Set Methods (TLSM) for MATLAB, a toolbox de-
veloped to tackle time dependent Hamilton-Jacobi PDEs [8].
The TLSM uses Finite-Difference Methods (FDMs) on top of
structured Cartesian grids to determine the evolution in time
of the state vector. Albeit based on the same PDE and mod-
elling similar transport mechanisms, the results from TLSM
are computed resorting to approximations, contrary to the an-
alytical closed-form expression used so far. The simulations
tested consisted on: a total duration of 1000 [s]; an environ-
ment dictated by a diffusivity constant k = 8.5 [m2/s] and
uniform wind flow of ν̂ = [1, 1, 0] [m/s], in the advective
case; a source placed at ~rs = [35, 35, 0] [m] that initiates its
release at t0 = 200 [s], at a constant rate of µ = 1 [Kg/s]; an
uniformly spaced sensor grid of nine sensors placed at rxi

∈
{25, 50, 75} [m], ryi

∈ {25, 50, 75} [m] and rzi = 0 [m],

subject to a bias of b = 1×10−4 [Kg/m3] and Gaussian noise
error with a standard deviation σ = 2 × 10−6 [Kg/m3], mak-
ing observations with a sampling time of ∆t = 10 [s]. The
results are displayed in Table 1. In general, the framework
achieves good results in the task of detecting and localizing
a diffusive point source. The TLSM generated field presents
differences to the closed-form expressions, that are reflected
on the accuracy of the estimates, making it extremely difficult
for the CRLBs to be achieved. The source location parameters
are the most resilient parameters to modelling errors. Detec-
tion occurs in the time instant following the source activation.

7. CONCLUSIONS

The current work extends on the approach taken by [1],
presenting results for both the pure diffusive case and the

Dif Adv

|(x̂ − x)/x|
√

CRLB(x) |(x̂− x)/x|
√

CRLB(x)

rsx = 35 [m] 3.516E−03 2.635E−03 1.403E−02 5.509E−03

rsy = 35 [m] 3.573E−03 2.635E−03 1.386E−02 5.509E−03

k = 8.5 [m2/s] 1.225E−01 2.460E−02 1.335E−01 1.922E−03

t0 = 200 [s] 9.975E−04 4.971E−02 6.080E−03 4.848E−03

µ = 1 [Kg/s] 1.472E−01 2.831E−03 3.479E−01 4.959E−04

b = 1E−04 [Kg/m3] 1.700E−01 2.471E−07 1.495E−02 1.836E−07

Table 1: Simulation results, tested under the conditions men-
tioned in Section 6, using the TLSM to compute concentra-
tions. Each line in the table corresponds to a parameter, where
the real value is indicated in the leftmost column. For both
diffusive and advective-diffusive conditions, we indicate the
relative errors of the estimates and the squared root of the
CRLBs.

advective-diffusive one. We address specific robustness and
usability issues identified while trying to operationalize such
approach, namely the challenging optimization problem in-
herent to the MLE where good initialization is fundamental
and the observation selection strategy used in detection.
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