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ABSTRACT
In this paper, we examine the descriptiveness and recognition
properties of different feature representations for the analysis
of musical signals, aiming in the exploration of their micro-
and macro-structures, for the task of music genre classifica-
tion. We explore nonlinear methods, such as the AM-FM
model and ideas from fractal theory, so as to model the time-
varying harmonic structure of musical signals and the geo-
metrical complexity of the music waveform. The different
feature representations’ efficacy is compared regarding their
recognition properties for the specific task. The proposed fea-
tures are evaluated against and in combination with Mel fre-
quency cepstral coefficients (MFCC), using both static and
dynamic classifiers, accomplishing an error reduction of 28%,
illustrating that they can capture important aspects of music.

Index Terms— Music genre classification, AM-FM
model, energy separation algorithm, fractals, Bag-of-Words.

1. INTRODUCTION

Genre is the most popular and widespread used term for the
description of music both among users and in music indus-
try [1]. It is the main method for organizing databases, music
libraries and music stores and basic descriptor in order to find
similarities among artists and compositions. Humans while
trying to discover new music, they rely on features such as
melody, harmony, rhythm, etc. [2], specific emotional con-
tent, or they search for music of a particular style and “tex-
ture” [3]. Moreover, their music collections are usually sorted
according to artist, year, country of origin, but mainly genre.
However, the term genre is not considered a reliable descrip-
tor because of the fuzzy boundaries and the overlap among
the different genres and sub-genres [4], which makes the task
of music genre classification quite complicated. Still, most
recent research in the field succeed in achieving very good
recognition results.

Over the years, various feature sets have been proposed
and pattern recognition algorithms have been employed to
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solve the complex task of genre classification. Such feature
sets include timbral features, e.g., temporal, energy, spectral
shape features and others, rhythm and pitch related features.
Regarding the classification algorithms hidden Markov mod-
els (HMM) [5] and Support Vector Machines (SVM) [6, 7]
have been used successfully in various cases. For an overview
of features and machine learning techniques see [1, 4].

In this paper, we explore and compare five different fea-
ture representations based on micro-, macro-structures and
Bag-of-Words. For the creation of those representations we
use nonlinear features, such as modulations and fractals,
which have proven useful for various applications. Section 2
concerns the description of the proposed nonlinear features as
well as a “music” filterbank for the extraction of the AM-FM
features is introduced. In Sec. 3 the five feature represen-
tations are presented. We continue with recognition experi-
ments, Sec. 4, where the nonlinear features are also fused, in
order to examine their discriminability capabilities regarding
the task of genre classification. The results illustrate that they
can capture important aspects of musical signals.

2. PROPOSED FEATURES

2.1. AM-FM modulations

Small fluctuations or micro-modulations in frequency occur
naturally in both human voice and music [8]. Additionally,
the musical signals’ temporal micro-structure consists of in-
stantaneous amplitude and frequency modulations of their
main resonances, which characterize their waveforms. In-
spired by the fact that the AM-FM model has been used
successfully for speech processing [9], music instrument
classification [10] and audio saliency/event detection [11],
we propose the AM-FM modeling of music signals for the
task of genre classification. Hence each resonance com-
ponent is modeled as an amplitude and frequency mod-
ulated sinusoid (AM-FM signal) while the whole music
signal is modeled as a sum of such AM-FM components
S(t) =

∑K
i=1 αi(t) cos (φi(t)), where αi and φi are the

instantaneous amplitude and phase signals of component i.
The AM-FM features investigated in this paper are: the

mean Instantaneous Amplitude (m-IAM), i.e., the short-
time mean of the instantaneous amplitude signal |α i(t)| for



Fig. 1. Different approaches for the analysis of music signals and the extraction of the proposed features.

each resonance component i, parameterizing the resonance
amplitudes, the mean Instantaneous Frequency (m-IFM),
i.e., a short-time weighted mean of the instantaneous fre-
quency fi(t), providing information about the signal’s fine
structure taking advantage of the excellent time resolution
of the ESA [9], and the Frequency Modulation Percentage
(FMP) [12], defined as FMPi = Bi/Fi for each resonance
i, where Bi is the mean bandwidth (an amplitude-weighted
version of the fi(t)-signal deviation), and Fi is the weighted
mean frequency value of resonance i (parameterizing the
maximum change from the mean modulation frequency).

Specifically, we use a regularized version of the ESA
for the demodulation of the signals, called Gabor-ESA [12],
which is a combination of the continuous time ESA and Ga-
bor filtering of the signal, providing smoother instantaneous
estimates. In this case the Teager Energy operator Ψ[x] [13]
and the bandpass filtering are combined as follows:

(1)
Ψ[x(t) ∗ g(t)] =

[
x(t) ∗ dg(t)

dt

]2

− (x(t) ∗ g(t))
[
x(t) ∗ d2g(t)

dt2

]
,

where x(t) is the input signal, and g(t) is the Gabor impulse
response. The instantaneous signals are given by f(t) ≈
1/2π

√
Ψ[ẋ(t)]/Ψ[x(t)] and |α(t)|≈ Ψ[x(t)]/

√
Ψ[ẋ(t)]

whereΨ[x] = ẋ2 − xẍ and ẋ = dx/dt.
The filterbank consists of 12 bandpass mel-spaced Gabor

filters with 50% overlap of the successive filters. Although
this baseline configuration has proven successful for musical
instrument recognition [10], in our effort to better control the
bandbass filtering of music signals we propose the creation of
a “music” filterbank, where the center frequency of each fil-
ter is determined by the frequency of each musical note. Two
different music filterbanks are thus created; the first consist-
ing of 89 filters beginning in the second octave (C2 = 65.4Hz),
and the second consisting of 111 filters starting at the first oc-
tave (C1 = 32.7Hz). The filters’ bandwidth in this case range
from the center frequency of the previous filter (i.e., note) to
the center frequency of the next filter; thus for a filter with
frequency fi, the bandwidth range is b1i = [fi−1, fi+1].

2.2. Multiscale Fractal Dimension (MFD)
AM-FM features capture one aspect of the nonlinear struc-
ture of music signals. Another aspect is their fractal structure,
as explored in [14, 15]. Hence, we fuse AM-FM with fractal
features to enhance the recognition performance. To compute
fractal features we use the method developed in [16]. Specifi-
cally, the algorithm is using nonlinear multiscale morphologi-

cal filters that can create geometrical covers around the graph
of a signal. The fractal dimensionD can then be found by:

D = lim
s→0

log[Area of dilated graph by disks of radius s]
log(1/s)

. (2)

In practice, real-world signals do not have the same structure
over all scales, hence D can be computed by fitting a line to
the log-log data of (2) over a small scale window that moves
along the s axis, creating a profile of local multiscale fractal
dimensions (MFDs) at each time location. In this work, we
use the MFDs for the analysis of music’s micro-structures.

3. DIFFERENT FEATURE REPRESENTATIONS

In this paper we have examined different approaches for the
analysis of music signals, aiming in the exploration of their
micro- and macro-structures, see Fig. 1. The basic feature
set, used in all evaluation cases, is based on modulations and
consists of log(m-IAM), m-IFM and FMP. However, it is of-
ten augmented with MFDs and/or MFCCs (which are mainly
used for comparison). The examined methods and Feature
Representations (denoted as FR) are explained next:
FR 1: Short time analysis for the recognition of the sig-

nals’ micro-structures, where the proposed instantaneous fea-
tures are calculated with the baseline mel-spaced Gabor fil-
terbank, consisting of 12 filters, and bandwidth overlap of ad-
jacent filters equal to 50%. The mean features are calculated
using 30 ms frames with 50% overlap.
FR 2: Short time analysis for the recognition of the sig-

nals’ micro-structures, where the AM-FM features are calcu-
lated with the “music” filterbank of 89 or 101 Gabor filters.
FR 3: Recognition of the signal’s macro-structures us-

ing analysis frames of 125 or 200 ms with 80% overlap for
the calculation of the mean instantaneous features, using the
baseline Gabor filterbank.
FR 4: Creation of an augmented feature vector by con-

catenating the features (FR1) from a number of short time
frames around an observation vector, for the recognition of
the signals’ temporal information and macro-structures. We
experimented by combining successive frames with a total
duration of 1/8, 1/4, 1/2 and 1 sec which corresponds to 8,
15, 33 and 65 frames, respectively. For the reduction of the
feature space PCA analysis was used and experimention was
conducted so as to find the optimal number of principal com-
ponents. This approach, using HLDA (Heteroskedastic Lin-
ear Discriminant Analysis) for dimensionality reduction, has
been used in speech applications with successful results [17].
FR 5: Bag-of-Words (BoW) modeling for classification

of the music signals. BoW representations were originally
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Fig. 2. Bag-of-Words representations for classical and blues.

proposed for text analysis [18], but then became one of the
most popular methods in computer vision and applications
such as object classification, video scene analysis and action
recognition [19, 20].

The process required in order to create the BoW repre-
sentations is summarized in the following steps: (a) feature
extraction from the music signals (in our case the modula-
tion features from FR1 are used after feature selection with
a sequential forward selection algorithm). (b) Clustering of
the feature vectors, with K-means, in order to generate “mu-
sic words” and create the music dictionary. (c) Calculation
of the frequency of music words (histograms) in each mu-
sic signal for the creation of BoW representations. In other
words, considering a set of data D = {d1, . . . , dN}, where
di are the features of N music signals, then K-means clus-
ters the featuresD into a fixed number ofK centers, creating
the music dictionaryW = {w1, . . . , wK}, represented by K
words. Subsequently, each music piece can be represented
by a K × N co-occurrence table of counts N ij = n(wi, dj)
where n(wi, dj) is the frequency of the word wi in a music
piece dj [21]. The result of the BoW representation is usually
a sparse feature vector with dimension defined by the num-
ber of centers, see Fig. 2. The advantage of this procedure is
the reduced computational complexity since the recognition
problem is simplified in finding similarities between the mu-
sic pieces. After experimentation we found that clustering in
4000 centers achieved the best accuracy.

For all representations, except FR4, the feature vectors
were incremented with the first and second temporal deriva-
tives. In order to create robust descriptors the dimensionality
was reduced through PCA analysis, hence, creating feature
sets that were uncorrelated while exhibiting the maximum
variance among them.

4. RECOGNITION EXPERIMENTS

In this section, we investigate the recognition properties of the
proposed features, using the GTZAN database [22], which
consists of 30 sec excerpts from ten different genres. To re-
duce complexity during feature extraction (note that the in-
stantaneous signals are calculated in the entire audio signal)
and training, we divide each music excerpt into three 10 sec
segments. This way, we also achieve the expansion of the
database (1000×3), considering the triplets of each excerpt as
a “different version” of the same music track. However, for

FR1
LMF72 12log(m-IAM)+12m-IFM (+12∆+12∆∆).

LMFiPf52 39 AMFM+13 FMP features after PCA.

MFC39 13 MFCC + 13∆ + 13∆∆.

FR2
LMF89b1198 Feature sets emerged using 89 or 101 filters.

b denotes the bandwidth. The final number of
features have emerged after PCA analysis of
the AM-FM features +∆s.

LMF89b1240
LMF101b1265

FR4

LMFPC392(8F )
Feature sets emerged by concatenating 8 short
time frames (8F) using the features: 12log(m-
IAM)+12m-IFM+12FMP+13MFCC
+58MFD, denoted by the letters LM,F,P,C,D
respectively. The final number of features
have emerged after PCA analysis. 8FH
denotes concatenation with 50% overlap.

LMFPCD214(8F )

LMFPCD214(8FH)

LMFPCD428(8F )

LMFPCD428(8FH)

FR5

LMF58 58 AMFM features selected from LMF72.

MFC21 21 MFCC selected from MFC39 .

LMF-MFC74 74 features selected from LMF72+MFC39.

LMFiD-MFC66

66 features selected from LMFiD40MFC39

which has emerged after PCA analysis of
LFM72+MFD[s = 1]+MFC39 .

Table 1. List of proposed feature sets (the subscript in the name of
each feature set shows the total number of features).

the random selection of training and test sets we take notice
that the triplets of the same audio file are included in either
the train or the test set, since a completely random selection
and mixing would result in much better recognition accuracy.
In all experiments the training data is randomly selected to be
90% of the available audio signals and the results presented
have emerged after 5-fold cross validation.

The proposed features (expect for the BoWs) were eval-
uated with HMMs, using the HTK [23] system, varying the
number of Gaussian mixturesM = [1−16] and statesN = 5
and/or 7, 9. Their performance was compared with a standard
set of 13 MFCCs plus their derivatives. Moreover, multi-
stream modeling was conducted, where the different features
were combined by changing the weight of each stream.

It is common practice for BoW representations to be eval-
uated using SVMs. Thus, we used nonlinear SVMs [24]
(one-against-all) with a generalized Gaussian kernel χ2

(chi-squared), where χ2(Hi,Hj) is the distance between
two histograms with K centers [19]. The χ2 distance
for comparing two histograms Hi and Hj is defined as:
χ2(Hi, Hj) =

1
2

∑K
k=1

[hik−hjk]
2

hik+hjk
, whereK is the number of

music words (clusters).

4.1. Results
Based on the recognition results of the different feature rep-
resentations, which are listed in Table 1, we show that the
AM-FM features achieve good recognition of the ten music
genres and better performance than the MFCCs. The MFDs
were only evaluated fused with AM-FM features and results
are presented for the cases they enhanced the recognition. In
the following results the number ofM mixtures that achieved
the best recognition accuracy is shown in brackets.



Accuracy Results %
FR Features HMM

# States : N = 5 N = 7

FR1 LMF72 - 76.46 (16) 76.46 (16)
LMFiPf52 - 77.86 (16) 79.87 (15)
MFC39 - 78.06 (14) 78.35 (14)

FR2
LMF89b1198 - 81.68 (14) -
LMF89b1240 - 81.81 (14) -
LMF101b1265 - 83.22 (14) -

Multi-Stream Cases
Features Weights N = 5 N = 7

FR1
LMFi39MFC39

0.3 - 0.7 81.40 (16) 81.47 (12)
0.5 - 0.5 82.81 (16) 82.27 (14)

LMFiPf52MFC39
0.3 - 0.7 81.54 (16) 81.87 (12)
0.5 - 0.5 82.08 (12) 82.61 (14)

FR2

LMF89b1198MFC39

0.3 - 0.7 84.22 (16) -
0.5 - 0.5 83.50 (12) -
0.7 - 0.3 83.13 (16) -

LMF89b1240MFC39

0.3 - 0.7 83.48 (15) -
0.5 - 0.5 84.15 (11) -
0.7 - 0.3 82.74 (15) -

LMF101b1265MFC39

0.3 - 0.7 84.41 (14) -
0.5 - 0.5 83.68 (14) -
0.7 - 0.3 83.28 (14) -

Table 2. Recognition average results for 10 music genres with HMM
for FR1 and FR2, where N the # of states. In brackets the # of
mixturesM for which the best accuracy was obtained can be seen.

The experimental results for FR1 (see Table 2 for clas-
sification accuracy (%) and Table 1 for feature specific infor-
mation) showed that the combination of the proposed features
with theMFCCs proved out to be better than theMFCCs in all
cases. Even though the AM-FM features alone exhibit lower
recognition at a rate of about 0.5–2% forN = 5, they achieve
better recognition whenN = 7. Specifically, we observe that
the feature set LMFiPf52 shows an error rate reduction (ERR)
of 7% forN = 7, while for the multi-stream experiments and
the best combination, i.e., LMFi39MFC39 an ERR of 20%
is obtained, for HMMs with N = 5 and equal weights for
the two streams s1,2 = 0.5. Regarding the AM-FM features
we note that the addition of FMPs in the mean instantaneous
features, followed by PCA, see LMFiPf52, reduces the error
compared to LMF72 ca. 5% forN = 5 and 14% forN = 7.

The recognition results for FR2, namely the feature sets
extracted with the music filterbank, see Table 2, are higher,
with ERR at about 24% for the LMF101b1265 compared to
LMFiPf52 and MFC39, while their combination with MFC39

yields an ERR of 28% compared to MFC39 and about 8%
compared to the best combination of FR1 i.e., LMFi39MFC39

forN = 5. Observe also that in some cases the best accuracy
is gained when the weight of AM-FM features is equal to the
MFCCs, which strengthens the fact that the modulations con-
tribute notably to the specific task.

Figure 3 shows the classification accuracy for FR3, thus
the mean AM-FM features extracted using analysis frames
of 125 and 250 ms respectively. In general, we observe that
this type of analysis does not perform equally good. The best
recognition rate of 75.3% is achieved by LMFP108(125), con-
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Fig. 3. Recognition average results for 10 music genres with HMM
for FR3, where N = 5 states andM = [1− 16] mixtures.

Accuracy Results %
HMM

Features N = 5 N = 7 N = 9
LMFPC392(8F ) 82.61 (15) 81.20 (8) 81.20 (12)
LMFPCD214(8F ) 82.28 (14) 80.88 (15) 81.94 (11)
LMFPCD214(8FH) 82.88 (10) 82.34 (15) 82.01 (11)
LMFPCD428(8F ) 82.48 (16) 81.20 (15) 80.74 (10)
LMFPCD428(8FH) 81.68 (16) 82.35 (14) 82.61 (13)

Table 3. Recognition average results for 10 music genres with HMM
for FR4, where N = 5, 7, 9 states.

sisting of LMF72 plus 36 FMP using analysis windows of
125 ms and for M = 13 mixtures. The worst results are
presented for the features extracted with analysis windows of
250ms, except for LMFP108(250) forM = [9−11, 15], which
achieved a maximum recognition of 75%. Though, we note
that the addition of FMPs to the mean instantaneous features
enhanced the recognition and reduced the error up to 7% and
12% for LMFP108(125) and LMFP108(250) respectively.

Table 3 shows the accuracy for the best sets of FR4, thus
the concatenation of short time frames, with HMMs forN =
5, 7, and 9 and M = [1 − 16]. The set LMFPCD214(8FH)

showed the greatest recognition ability 82.9% forN = 5 and
M = 10. Nevertheless, most feature sets showed competi-
tive properties not only because of the good recognition, but
also for the short training times. Note that despite the sizable
number of features after the PCA analysis, due to the reduc-
tion of the time dimension (i.e., the number of total frames)
the obtained representationswere quite compact. It is also im-
portant to emphasize that the specific feature representations
achieved comparable to the best accuracy results with the use
of only a few Gaussian mixtures. Finally, we notice that in
this case theMFDs contribute to the recognition performance.
Although we created sets concatenating successive frames of
varying duration the evaluation showed that best recognition
was achieved when only 8 frames were concatenated.

Table 4 shows accuracy results for FR5 with SVMs. We
note that BoW representations, using the AM-FM features,
achieved better recognition than the MFCCs, decreasing the
error about 11% (LMF58) compared to MFCCs and 16%
when combined, for the set LMFiD-MFC66, which also in-



Features Accuracy Results %
LMF58 82.62
LMFP50 82.42
MFC21 80.54

LMF-MFC74 82.88
LMF58MFC21 82.56
LMF-MFC-D60 81.48
LMFiD-MFC66 83.56

Table 4. Recognition average results for 10 music genres and FR5
(BoW representations) evaluated with SVM.

Accuracy Results %

Music Genre LMF101b1265LMF101b1265 LMFPCD LMFi39 MFCCMFC39 214(8FH)MFC39

Blues 89.3 90.0 87.3 92.0 88.7
Classical 95.3 96.0 93.4 95.3 93.3
Country 85.8 84.5 85.1 81.8 83.8
Disco 75.8 74.5 78.0 71.8 69.7
Hip-hop 74.0 83.3 78.7 80.0 77.3
Jazz 94.0 90.7 90.7 89.3 76.7
Metal 91.3 92.7 88.7 89.2 89.3
Pop 85.3 94.7 90.0 92.7 84.0
Reggae 73.3 74.7 75.3 72.7 69.3
Rock 67.8 63.1 61.8 61.1 51.0

Table 5. Recognition results for individual genres for the four best
feature combinations compared to MFCCs, with HMM.

cludes the fractal dimension. Generally, we observed that the
histograms for the different genres were quite dense, which
we suppose it points at the less successful recognition.

Concluding, when it comes to the accuracy results for
each individual genre, see Table 5, we mark that classical
music has the most successful recognition, followed by pop,
metal and country, while worst results were obtained for rock
in all feature sets. We should also point out that the combi-
nation of AM-FM features performed better than the MFCCs
for all genres.

5. CONCLUSIONS

We have examined five different approaches for the creation
of feature representations, based on nonlinear features. The
proposed methods were applied on classification experiments
illustrating that they can capture important aspects of music,
such as the micro-variations of their structure. Regarding the
various representations, we conclude that short time analy-
sis with the introduced “music” filterbank for the extraction
of AM-FM appears to be really promising achieving the best
recognition accuracy. Descriptors based on macro-structures,
through the concatenation of short time frames, may reduce
the complexity of the classification system, since satisfactory
results can be achieved using simpler statistical models while
the compact representations results in shorter training dura-
tion. With the Bag-of-Words we have introduced an alterna-
tive feature extraction method for music signals that creates
compact representations resulting in reduced computational
complexity and higher recognition compared to MFCCs. Fi-
nally, regarding the use of MFDs we note that they can ben-
efit and enhance the recognition performance, which could

thus reveal evidence of fractal aspects on musical sounds, but
only when fused with other features. In our ongoing research
we intent to find why some genres, such as rock, show lower
performance and try to enhance their recognition.
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