
FRACTIONALLY SPACED NON-LINEAR EQUALIZATION
OF FASTER THAN NYQUIST SIGNALS

Stefano Tomasin and Nevio Benvenuto

Department of Information Engineering, University of Padova, {tomasin, nb}@dei.unipd.it

ABSTRACT
Faster than Nyquist transmissions provide the opportunity of
increasing data rate at the expenses of additional inter-symbol
interference. The optimum receiver requires a maximum like-
lihood sequence detector, whose complexity grows exponen-
tially with the number of filter taps and with the number of
bits per symbol. In this paper we consider two suboptimal
approaches based on non-linear equalization of the received
signal. In order to further reduce the receiver complexity we
consider an implementation of equalization filters in the fre-
quency domain. The contributions of the paper are a) a re-
ceiver architecture for fractionally spaced non-linear equaliz-
ers, and b) efficient design methods of the equalization filters
in the frequency domain. In particular, the derived optimal
(in the mean square error sense) filters overcome approaches
proposed in the literature.

1. INTRODUCTION

For a transmission over non dispersive channels, if the cas-
cade of the transmit and receive filters satisfies the Nyquist
criterion for the symbol period, an equivalent symbol-rate
system with no intersymbol interference (ISI) is obtained.
The request for a higher spectral efficiency in modern com-
munication systems has led to the investigation of configu-
rations in which the symbol rate is increased, while keeping
unchanged the bandwidth of the transmitted pulse. Therefore,
the Nyquist criterion is not anymore satisfied and we obtain a
faster than Nyquist (FTN) transmission system [1], which is
characterized by ISI [2] even for transmissions on flat chan-
nels.

When ISI is present, the minimization of the bit error rate
(BER) is obtained by the maximum likelihood sequence de-
tector (MLSD) receiver, whose complexity however grows
exponentially with the number of both interferers and bits per
transmitted symbol. Various suboptimal solutions have been
proposed in the literature: equalization, channel shortening,
simplified MLSDs, also in combination with error correcting
coding schemes (see [2] for an extensive literature review).
With the exception of the linear equalizer of [3], no much at-
tention however has been devoted to the use of equalization
structures operating in the frequency domain (FD): indeed,
for generic systems affected by ISI, it has been shown that

high performance with low complexity can be achieved by
implementing filters in the FD by means of discrete Fourier
transforms (DFTs) [4]. However, it has been shown that for
FTN transmissions non-linear equalization structures outper-
form linear ones by partially canceling ISI [5].

In this paper we aim at merging the advantages of FD
equalization and non-linear equalization for FTN signals. In
[6] and [7] two receiver structures have been proposed for
FD non-linear equalization: the hybrid DFE (H-DFE) and
the iterative block DFE (IB-DFE). The H-DFE implements
a feedforward (FF) filter in the FD. Next, sample by sample a
hard decision is made which then feeds a feedback (FB) filter,
implemented in the time domain (TD). The IB-DFE instead
implements both FF and FB filters in the FD, and detection is
performed on a block-basis by an iterative detection/equaliza-
tion structure. The contributions of the paper are a) a receiver
architecture for fractionally spaced non-linear equalizers, and
b) efficient design methods of the equalization filters in the
FD.

2. SYSTEM MODEL

We consider a transmission system where the cascade of the
transmit, the channel and the receive filters has impulse re-
sponse h(t), while the convolution of the transmit and the
channel filter is h(eq)(t). The receive filter has impulse re-
sponse g(t). Symbols am, m = 0, 1, . . ., are transmitted at
rate 1/T , and the signal after the receive filter is sampled
at rate 2/T . Let si be the upsampled version of am, i.e.,
s2m = am, and s2m+1 = 0, for m = 0, 1, . . .. The signal
after sampling at the receiver can be written as

xi = vi + wi =

Nh−1∑
k=0

hksi−k + wi , (1)

where, by a proper sampling phase, hi = h(iT/2), i =
0, 1, . . . , Nh − 1 and wi is the noise term. In particular, wi
is obtained by filtering a complex value zero-mean additive
white Gaussian noise (AWGN) w(IN)

i , having power spectral
density N0, with a filter having impulse response {gi}, with
i = 0, 1, . . . , Ng − 1, a sampled version at T/2 of the receive
filter impulse response. Assuming that the bandwidth of the
transmit filter is lower than 2/T , then the reference signal to



noise ratio at the channel output is

SNR =
Ma

∑∞
k=−∞ |h(eq)(kT/2)|2

M
w

(IN)
i

, (2)

with Ma the power of {am} and M
w

(IN)
i

= N02/T . In the
equivalent discrete-time model of our system data sequences
are assumed independent and identically distributed (i.i.d.),
with zero-mean, and statistically independent of noise.

In a conventional transmission over a flat fading AWGN
channel, by choosing the cascade of the transmit and receive
filters as a Nyquist filter at rate 1/T , oversampling at the re-
ceiver can be omitted as sampling at rate 1/T yields a suffi-
cient statistic without ISI. In the following we consider FTN
systems where a faster sampling rate than 1/T must be used
at the receiver to obtain a sufficient statistics.

Once xi has been computed, various approaches can be
considered to detect am. The solution that minimizes the
error probability is provided by a MLSD receiver, that first
whitens the noise and then performs a Viterbi detection. If
the receive filter is matched to the received pulse a simpler
MLSD is given by the Ungerboek’s formulation [8]. How-
ever, the complexity of MLSD grows exponentially with both
the number of taps Nh and the constellation size of am. We
focus here on equalization approaches, where xi is processed
by a non-linear structure. 1

The equalization structures that will be presented in the
following sections require a particular block transmission
format, denoted pseudo noise (PN)-extended transmission.
In particular, data symbols {dm} are organized into blocks
of length M , and each block is extended with a fixed se-
quence of L symbols, for example a PN sequence {qm},
m = 0, 1, . . . , L − 1, which is assumed to be known at the
receiver. Therefore, signal {am} can be written as

am+`P =

{
dm+M` m = 0, 1, . . . ,M − 1

qm−M m = M, . . . , P − 1 .
(4)

where the last L symbols are the PN sequence. An additional
PN extension is required before the first data block. Note that
if 1/T remains the transmission rate, the symbol rate of am
will be now 1/T ′ = (M/P )1/T , i.e., we are transmitting at
a slower data rate.

In the following we will assume that L ≥ (Nh − 1)/2,
so that by taking blocks of xi of size 2P , in each block

1Notation: Signals in the TD are denoted by lowercase italic letters. The
DFT over 2P samples of a signal in the TD ui, i = 0, . . . , 2P−1 is denoted
by its corresponding upper case letter, and DFT and inverse DFT (IDFT) are
defined, respectively, as

Up =

2P−1∑
k=0

uke
−j 2πkp

2P , ui =
1

2P

2P−1∑
k=0

Upe
j 2πip

2P , (3)

where j =
√
−1, and i, p = 0, 1, . . . , 2P − 1. The real part of x is denoted

as <(x). The complex conjugate of x is denoted as x∗.

the first 2M samples are not affected by interference due to
adjacent blocks. Therefore, without restrictions, we focus
on the transmission/reception of first block, i.e., for xi with
i = 0, 1, . . . , 2P , and we set the block index to zero, ` = 0.

3. HYBRID DFE

The H-DFE is a non-linear equalizer with the FF filter imple-
mented in the FD on blocks of size 2P = 2(M+L), by means
of DFT of the received signal, and the FB filter implemented
in the TD, [6]. P/S and S/P blocks are parallel to serial and
serial to parallel converters, respectively.

The received signal xi at T/2 is split into blocks of size
2P , whose DFT is [6]

Xp = HpSp +Wp . (5)

Then FF filtering is performed by multiplying Xp by the FF
filter coefficients {Cp}, yielding

Yp = XpCp , p = 0, 1, . . . , 2P − 1. (6)

Through IDFT of {Yp} we obtain {yi} in the TD. Decimation
by 2 follows to obtain signal ȳm, which is summed to the FB
signal to obtain ūm, the signal at the detection point. Next,
detection of ūm gives âm. If {b̄k}, k = 1, 2, . . . , Nb, are the
coefficients of the FB filter, it is

ūm = ȳm +

Nb∑
k=1

b̄kâm−k , m = 0, 1, . . . ,M − 1. (7)

In (7), âm for m < 0 corresponds to the inserted PN se-
quence.

3.1. H-DFE design

When H-DFE was first introduced [6,9,10], and also in more
recent contributions [4, 11], its design is performed by a) ex-
pressing the optimal FF filter as a function the FB filter, b)
obtaining the mean square error (MSE) as a function of the
FB filter coefficients only; c) minimizing the resulting MSE
expression to obtain the FB coefficients; d) inserting the FB
coefficients into the first FF filter expression and evaluate.
However, this procedure does not yield the global minimum
MSE. We derive here the optimal solution, that holds for both
fractionally-space and non-fractionally-spaced equalizers.

Let MS and MW (IN) be the power of Sp and W (IN)
p , re-

spectively. It is MS = P
2 Ma and MW (IN) = PMw(IN) . More-

over, Wp = W
(IN)
p Gp, where Gp is the 2P -size DFT of the

sampled impulse response gi. The MSE can be written as

J =
1

P
E

[
P−1∑
m=0

|ūm − am|2
]

(8)



∂J
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2
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(
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P
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(
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1

P
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P

}
= 0 ,

(15)

By using the Parseval’s theorem we obtain

J =
1

P 2

P−1∑
p=0

E[|Ūp − S̄p|2] , (9)

where the FD properties of upsampling yield

Ūp =
1

2
[Yp + Yp+P ], S̄p =

1

2
[Sp + Sp+P ] = Sp . (10)

Now we can rewrite the MSE as

J =
1

P 2

P−1∑
p=0

[
MW (IN)

|GpCp|2 + |Gp+PCp+P |2

4
+

MS

∣∣∣∣1− CpHp +Bp + Cp+PHp+P +Bp+P
2

∣∣∣∣2
]
,

(11)

where

Bp =

Nb∑
k=1

b̄ke
−j 2πkp

P (12)

is the 2P -size DFT of the upsampled version of the FB filter
{b̄k}, hence Bp = Bp+P , p = 0, 1, . . . , P − 1. Note that
it must be b̄0 = 0. Assuming correct detections (i.e., âm =
am), for a given FF filter, the optimal FB filter removes all
residual interference. Hence, from (11) we have

b̄k =
1

P

P−1∑
p=0

(
1− CpHp + Cp+PHp+P

2

)
ej

2πkp
P , (13)

for k = 1, . . . , Nb. Now, substituting Bp, the MSE can then
be written as a function of the FF filter only as

J =
1

P 2

P−1∑
p=0

{
MW (IN)

|GpCp|2 + |Gp+PCp+P |2

4
+

MS

∣∣∣∣1− CpHp + Cp+PHp+P

2
+

−
P−1∑
q=0

(
1− CqHq + Cq+PHq+P

2

)
1

P

Nb∑
k=1

ej
2πk(q−p)

P

∣∣∣∣2
}
.

(14)
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Fig. 1. feedforward part of the IB-DFE.

By setting to zero the gradient of J with respect to Ck we
obtain the linear equation system (15) at the top of the page
where δ(0) = δ(−P ) = 1 and δ(k) = 0, for k 6= 0,−P . Its
solution yields the optimal FF coefficients. Next by (13) we
derive the FB coefficients.

4. ITERATIVE BLOCK DFE

The fractionally spaced IB-DFE scheme, operating on blocks
of the received signal, is shown in Figs. 1 and 2. The scheme
performs iterated operations on each 2P -size block of the re-
ceived signal [7]. We denote with l = 0, 1, . . . , NI − 1, the
iteration number. The equalizer includes two parts: 1) the FF
filter with coefficients {C(l)

p }, p = 0, 1, . . . , 2P−1, in the FD,
(see Fig. 1), which partially equalizes the interference, and 2)
the FB filter with coefficients {B(l)

p }, p = 0, 1, . . . , 2P − 1,
and output {Z(l)

p } in the FD (see Fig. 2), which removes part
of the residual interference.

In details, similarly to the H-DFE, also for IB-DFE 2P -
size blocks of xi are transformed by DFT and then multiplied
by the FF filter coefficients in the FD obtaining signal

Y (l)
p = C(l)

p Xp , p = 0, 1, . . . , 2P − 1. (16)

Then the output of the FB filter is summed to the FF output to
obtain

U (l)
p = Y (l)

p + Z(l)
p . (17)

Lastly, U (l)
p is transformed by IDFT into {u(l)i }, which is

downsampled to {ū(l)m }.
With regard to the FB part of Fig. 2, detection is per-

formed on ū
(l−1)
m to obtain â

(l−1)
m , m = 0, 1, . . . ,M − 1.

Next, {â(l−1)i } is extended to size P by PN insertion. By



J (l) =
1

P 2

P−1∑
p=0


∣∣∣∣∣C

(l)
p Hp + C

(l)
p+PHp+P

2
− 1

∣∣∣∣∣
2

MS +

∣∣∣∣∣B
(l)
p +B

(l)
p+P

2

∣∣∣∣∣
2

M
(l)

Ŝ
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Fig. 2. feedback part of the IB-DFE.

upsampling, {ŝ(l−1)i } is then obtained. DFT follows, whose
output is multiplied by the FB filter coefficients to yield

Z(l)
p = B(l)

p Ŝ(l−1)
p , p = 0, 1, . . . , 2P − 1. (18)

Since Z(l)
p depends upon the detected data at iteration (l−

1), for l = 1, when no detected data is available, we set

â(0)m = 0 , m = 0, 1, . . . ,M − 1 , (19)

while for m = M, . . . , P −1 we have the PN sequence. Note
that when IB-DFE is used, since detection is performed on
blocks of signal, we can perform decoding and re-encoding
of signal (with respect to error correcting codes used at the
transmitter) in order to improve the reliability of the signal
used in the FB.

4.1. Design method

Also for IB-DFE we consider the minimization of the MSE
at the detection point as a design criterion. From Fig. 1, the
MSE J (l) at the detection point for iteration l is given by (9)
where now Ūp = (U

(l)
p + U

(l)
p+P )/2.

We also impose the constraint that the FB filter does not
remove the desired component, i.e.,

P−1∑
p=0

B(l)
p = 0 . (20)

Let M
(l)

Ŝ
be the power of Ŝ(l)

p and let us define the average

correlation between Sp and Ŝ(l)
p as r

(l)

SŜ
= E[SpŜ

(l)∗
p ]. Meth-

ods to estimate r
(l)

SŜ
are given in [7]. Then J (l) can be rewrit-

ten as in (21) at the top of the page. By using the Lagrange

multiplier method, the FB filter coefficients minimizing J (l)

under constraint (20) are

B(l)
p = −

r
(l−1)
SŜ

MŜ

[
C

(l)
p Hp + C

(l)
p+PHp+P

2
− γ(l)

]
, (22)

and B(l)
p+P = B

(l)
p , p = 0, 1, . . . , P − 1

γ(l) =
1

2P

2P−1∑
p=0

C(l)
p Hp . (23)

Defining κ(l) = 1− |r(l)
SŜ
|2

MSMŜ
, apart from an irrelevant constant

factor, the optimal FF filter coefficients are

C(l)
p =H∗p |Gp+P |2×[

κ(l−1)
|Hp|2|Gp+P |2 + |Hp+P |2|Gp|2

2

+
MW (IN)

2MS
|Gp|2|Gp+P |2

]−1
, p = 0, 1, . . . , 2P − 1

(24)

where we consider a periodic extension of both Hp and Gp
with period 2P , i.e., Hp+P = Hp−P for p = P, . . . , 2P − 1,
and similarly for Gp.

We just point out that the design computational complex-
ity of the IB-DFE is much lower than that of H-DFE if NI is
small. Conversely, with regard to processing, the complex-
ity of IB-DFE is much greater than that of H-DFE, especially
when coding is used.

5. NUMERICAL RESULTS

In order to assess the performance of fractionally spaced H-
DFE and IB-DFE in the context of satellite transmissions, we
assume that the transmitter uses a square-root raised cosine
filter with bandwidth β 1+α

T , where α is the roll-off factor and
β ≤ 1 is the FTN ratio between the data rate 1/T and the
transmit filter Nyquist rate. Here we consider α = 0.2. We
also assume that at the receiver a matched filter to the trans-
mit filter is used, and the channel is flat. Therefore {gi} is
obtained from a square-root raised cosine filter which is sam-
pled and properly delayed such that |g(Ng−1)/2| = maxi |gi|,
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Fig. 3. BER vs SNR for H-DFE and IB-DFE without coding.
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Fig. 4. BER vs SNR for H-DFE and IB-DFE with coding.

and we set Ng = 81. Similarly, filter {hi} is a raised cosine
filter, with bandwidth β(1 + α)/T , which is sampled at T/2
and properly delayed such that |h(Nh−1)/2| = maxi |hi|, and
we set Nh = 81. Therefore we consider L = 40. The block
size is P = 256. For H-DFE we set Nb = 40, while for
IB-DFE we set the maximum number of iterations NI = 2.

For coding purposes, we have considered the low density
parity check (LDPC) code of the digital video broadcasting
satellite standard DVB-S2, with rate 1/2 and block size of
64800 bit. The mapped symbols are quadrature phase shift
keying (QPSK) modulated.

Fig. 3 shows the BER of uncoded systems vs signal to
noise ratio (SNR) for β = 0.8 and β = 0.9. We also show
the matched filter bound (MFB) as a reference performance.
We note that for the considered range of SNR values, both IB-
DFE and H-DFE perform quite well even for β = 0.8, which
is the most adverse situation with respect to ISI.

When coding is considered, we obtain the performance
reported in Fig. 4. Note the different range (both in size and
in starting value) of SNR values with respect to Fig. 3. Again
we observe that performance of the two equalization systems
are close to that of the MFB.

6. CONCLUSIONS

In this paper we have proposed two FD equalization tech-
niques for FTN transmissions. The H-DFE and the IB-DFE
structures have been revisited for the special scenario, deriv-
ing receiver architectures and design procedures for an over-
sampled input.
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