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ABSTRACT

We present a system for Query-by-Example Spoken Term De-

tection on zero-resource languages. The system compares

speech patterns by representing the signal using two differ-

ent acoustic models, a Spectral Acoustic (SA) model cover-

ing the spectral characteristics of the signal, and a Tempo-

ral Acoustic (TA) model covering the temporal evolution of

the speech signal. Given a query and a utterance to be com-

pared, first we compute their posterior probabilities according

to each of the two models, compute similarity matrices for

each model and combine these into a single enhanced matrix.

Subsequence-Dynamic Time Warping (S-DTW) algorithm is

used to find optimal subsequence alignment paths on this fi-

nal matrix. Our experiments on data from the 2013 Spoken

Web Search (SWS) task at Mediaeval benchmark evaluation

show that this approach provides state of the art results and

significantly improves both the single model strategies and

the standard metric baselines.

Index Terms— Query by example, zero resources lan-

guages, unsupervised learning, long temporal context

1. INTRODUCTION
The objective of the Query-by-Example Spoken Term Detec-

tion (QbE-STD) task is to search for spoken audio within a

speech corpus by using a speech query. This task is gaining

interest in the scientific community in the last years. Within

the SWS task in the 2013 Mediaeval evaluation campaign [1]

evaluation systems were given a set of over 500 development

and 500 evaluation queries and a corpus of audio composed of

around 20 hours of audio and 9 different languages recorded

in different acoustic conditions. No information about the

transcription of the queries or the speech corpus, nor the lan-

guage spoken in each utterance was given to participants. In

addition, given that none of the languages in the dataset has

additional extensive resources available to train full speech

recognition systems, this can be considered as a zero-resource

QbE-STD task.

To tackle this task, different approaches have been used

in the literature. Many of them [2, 3] make use of posteri-

orgram features in order to improve the enhace comparison

between speech patterns. Posteriorgram features are obtained

as the posterior probabilities of a an acoustic model evalu-

ated on the input speech features and allow to consistently

compare acoustic patterns by removing factors of feature vari-

ability other than the content being spoken. Similarly, some

approaches [4] take advantage of well trained phonetic recog-

nizers available in some languages, and additional automatic

speech recognition systems to produce posteriorgram repre-

sentations. These systems are trained using quality annotated

datasets that provide solid acoustic models. Despite of this,

the performance of the models degrades when applied to dif-

ferent and mismatching data and some sort of adaptation must

be always applied. The difficulty at this point relies on how

to obtain meaningful acoustic models that provide adequate

posteriorgram features and how to properly compare them to

find matching results. Regardless of how the posteriorgrams

have been obtained, query and reference features can be com-

pared through a similarity matrix were the query is searched

inside the reference by using the S-DTW [5] algorithm.

In order to improve the matching accuracy, some ap-

proaches [6] perform a fusion of the similarity matrices

obtained from different feature posteriorgrams. Despite of

that, it is important to determine which types of information

can better complement each other in order to guarantee a per-

formance gain for the extra computational cost. Many studies

support that temporal and spectral information are comple-

mentary and crucial for speech processing by the human

auditory system [7]. The exploitation of temporal informa-

tion for supervised acoustic models has been widely studied

in [8]. The temporal evolution is modeled for each band of

the acoustic features by extracting temporal vectors on fixed

time intervals. The resulting vectors are modeled with respect

to phonetic classes using a supervised classifier. The resulting

posteriors are then used to train a parallel grammar phonetic

recognizer using hidden Markov models.

In this paper, we present a system based on pattern match-

ing and the fusion of different knowledge sources. Instead

of fusing information from different languages, we choose to

combine the speech representations of the signals obtained

from temporal and spectral models in a semi-unsupervised

manner. In order to improve the acoustic modeling with unsu-



pervised data, our approach is to drift the unsupervised train-

ing towards meaningful information by introducing linguis-

tic priors. We obtain those priors from an annotated data set

that, although it has a strong mismatch in both language and

acoustic recording conditions with respect to the experimen-

tal corpus, it incorporates a valuable seed for the training of

the acoustic models. We believe that zero-resource languages

may take profit from the available well studied languages,

since they probably share a certain amount of acoustic char-

acteristics [9].

In addition, instead of using the standard cosine similarity

to compare posteriorgram features, we extend this approach

by incorporating to the comparison a specially crafted matrix

defining an inter-cluster dissimilarity.

In order to find matching sequences we use a memory effi-

cient subsequence-dynamic time warping algorithm (s-DTW)

similar to that in [10]. With it we obtain the alignment paths

and the scores of all the potential matches of the queries inside

the reference utterances. Finally, we explore two different ap-

proaches to global score normalization: the standard Z-norm

approach and score mapping based on a continuous density

function.

2. SYSTEM DESCRIPTION

Figure 1 summarizes the proposed system. Initially, stan-

dard MFCC39 feature representation is compute, with 25ms

windows size and 10 ms shift time. We apply cepstral mean

and variance normalization to both queries and utterances at

file level. We then use the spectral-acoustic model and the

temporal-acoustic model to convert the input features into

posterior probability vectors, which are then combined into a

single similarity matrix to allow for search of the query into

each utterance. We use the s-DTW algorithm to determine

optimal alignment paths within this matrix. We then filter and

normalize the results to determine the final hypothesized hits

for each query. Each of these steps is further described below.

2.1. Spectral Acoustic Model

The SA model is based on a Gaussian mixture model (GMM).

GMM models trained from acoustic data with no supervision

have been reported as a successful way to model broad acous-

tic classes [2]. Despite of that, data preparation and model ini-

tialization are tricky steps that condition the model and there-

fore the performance of the entire system. There is a lack of

methods to assess the quality of the obtained model with re-

spect the representation of acoustic classes in the data space,

especially the ones which are meaningful for the task. Al-

ternatively, adaptation approaches can provide ways to apply

well trained supervised models to new data. We would there-

fore like to transform a GMM model trained in a supervised

manner from out-of-domain, out-of-language data to fit the

target data specific acoustic conditions. Although different

unsupervised adaptation approaches exist [11,12] we perform

Fig. 1. Schematics of the system. Two acoustic models gen-

erate pairwise distances between query and reference. The

matrices are fused into a single matrix where the alignment

paths are searched and filtered.

here an unsupervised training of the target model by using a

GMM model, trained in a supervised manner, as initialization.

We originally trained this supervised model using TIMIT

phonetic ground truth. In particular, we trained a 4-Gaussian

GMM for each of the 39 Lee and Hon [13] phonetic classes

and then combined all of them into a single GMM model.

This GMM is then used as initialization for an unsupervised

training of the final 156-component model (39x4) using the

Mediaeval 2013 database. The idea is to bias the unsupervised

learning towards a phonetic-like structure and solve the prob-

lem of a proper initialization of the model. We assume that

normalization on the data (CMVN) together with the dense

GMM model structure will inhibit the unsupervised training

from substantially modifying the original GMM structure.

2.1.1. Comparison of posterior vectors

Cosine similarity is generally used to compare posterior

probability vectors [2]. Such measure has been shown to be

slightly superior to other measures like the Kullback-Leibler

(KL) divergence [14]. Assuming sx, sy ∈ �156 being poste-

rior probability vectors of the acoustic model for a given pair

of acoustic vectors x, y, the cosine similarity is defined in Eq.

1. In addition to its geometric interpretation, it can be seen

as the posterior probability of x and y to belong to the same

cluster.

Cossim(sx, sy) =
sxs

�
y

‖sx‖ ‖sy‖ (1)



In addition, we want our metric to take into account the

similarity between posterior vectors and also penalize for the

dissimilarities from the underlying acoustic classes. In con-

sequence, we include a distance matrix into the similarity for-

mulation. The distance matrix we use is defined as

Weightsim(sx, sy) = sxe
−Ds�y (2)

where D ∈ M156x156[�] is the KL divergence between each

pair of Gaussian components in the acoustic model. Given

a pair of Gaussian components (i, j), let μi, μj be the mean

vectors and Σi,Σj the covariance matrices, then the KL di-

vergence is : Eq. 3.

D(i, j) =
1

2
(log(

|Σi|
|Σj | ) + tr(ΣiΣj +ΣjΣi − 2I)

+(μi − μj)(Σi +Σj)(μi − μj)
�) (3)

2.2. Temporal Acoustic Model

The objective of the temporal acoustic model is to use the in-

formation on the dynamics of the signal with a longer time

span than the standard MFCC features can provide, there-

fore becoming a good complement to the spectral acoustic

model. The temporal acoustic model is based on a long tem-

poral context approach [8]. We build an independent temporal

model for each of the 39 dimensions in the MFCC vector. The

choice of using MFCC domain features for this model is mo-

tivated by the fact that the individual dimensions are mostly

decorrelated and thus can be modeled independently. Initially,

we segment the training data by using an unsupervised pho-

netic segmentation approach [15] and extract a 150 ms con-

text from the center of each of the segments forming a collec-

tion of �31 vectors per MFCC dimension. A postprocessing is

performed on these vectors to avoid unnecessary overlap and

to select only relevant context samples. Each context vector is

then standardized to zero mean and unity variance, windowed

using a Hanning window, and decorrelated using discrete co-

sine transform to choose the first 15 coefficients as the final

�15 vector. The modeling of each dimension is initialized by

hierarchical k-medioids algorithm followed by an Expecta-

tion Maximization (EM) iteration to estimate the covariance

matrices. The resulting model is composed of a Gaussian

Mixture model of 128 components for each of the original

39 dimensions. We trained the temporal model using Medi-

aeval 2012 evaluation campaign database [16], which we used

as development data and because the 2013 data was still not

available at the time.

The comparison between two input vectors x, y is done in

each of the b dimensions independently using the posteriors

pbx, p
b
y ∈ �128 obtained by the band temporal model. Then,

the results from each band re fused by using Eq. 4.

dt(x, y, b) =
pbxp

b�
y

‖pbx‖
∥∥pby

∥∥

dt(x, y) =
1

B

B∑
b=1

−log(dt(x, y, b)); (4)

2.3. Query Search

For each query Q = {q1 . . . qN} and utterance

U = {u1 . . . uK} pair, we build a distance matrix M ∈
MNxK [�≥0] by combining the similarity matrices from the

SA and TA models as:

M(qi, uj) = −log(ds(si, sj)) + dt(qi, uj); (5)

We then use S-DTW to obtain the optimal alignment paths

between every Q and U . S-DTW is a straightforward vari-

ation of the well-known DTW algorithm where no penalty

is introduced by insertions in the utterances either at the be-

ginning or at the end of the query, therefore allowing us to

find the best matching subsequence in the utterance match-

ing the entire query. When implementing the matching algo-

rithm we incorporate a penalty term to each of the possible

alignment steps in the S-DTW equation. We define the lo-

cal constraints for S-DTW as shown in Eq. 6 where C is

the resulting accumulated cost matrix and P = {P1, P2, P3}
is a vector of positive penalties. We experimentally found

P = −log(
[
0.6, 0.6, 0.8

]
) to be optimal. The penalties work

together with the temporal model to avoid the presence of

heavily warped paths.

C(i, j) = M(i, j) +min(

⎧⎨
⎩

C(i− 1, j) + P1

C(i, j − 1) + P2

C(i− 1, j − 1) + P3

⎫⎬
⎭) (6)

The search alignment sequences between query and utter-

ance returns a set of possible paths. The major difficulty at

this point relies on how to decide which ones of the found

alignments are acceptable as potential query-utterance hits

and how to deal with intra-to-inter query results overlap. In

order to select relevant local maxima scoring paths, we first

lowpass filter the accumulated scores M(qN , ui)|∀iε1 . . .K
by using a 25 frames Gaussian window. Nonetheless, the

resulting selected alignment paths retain their original score

values. We solve intra-query overlap by selecting the best

scoring path, but its difficult to solve the overlap between the

detection of different queries at utterance level without priors

about their score distributions. At this point we perform ex-

clusively a global normalization and independent filtering of

the query results, leaving the inter-query overlap problem for

future work.

2.4. Global normalization
When all utterances have been processed for a given query, we

perform a global normalization of all possible matches. This



normalization step is critical when querying the database with

multiple queries because we would otherwise have to set up a

query-independent thresholds to separate between false alarm

and true detections. The queries have different acoustic char-

acteristics and the score distribution of their search results are

also different. In order to align those distributions we initially

used a standard Z-normalization approach. For this, we first

excluded the top best 500 results from the parameter estima-

tion to avoid true matches from biasing the normalization. Al-

ternatively we have also explored a different approach for nor-

malizing scores. Similarly to contrast enhancing performed

by histogram equalization in image processing [17], our ap-

proach replaces each resulting query scores with their corre-

sponding value within the query probability continuous den-

sity function (cdf) constructed from all scores for that query.

This effectively maps the scores distribution into a uniform

distribution and the cdf becomes a linear function.

3. EXPERIMENTS AND RESULTS

We have used three databases in our experimental setup. The

phonetic model used to initialize unsupervised training of the

SA model has been build using the 4620 utterances in the

TIMIT training corpus [18]. The subsequent unsupervised

training has been performed using the development set of the

Mediaeval 2013 database. In particular, we used the search ut-

terances and the development query set to represent the acous-

tic space. In addition, the TA model was trained using the

database from Mediaeval 2012 [16], considered as develop-

ment dataset in the 2013 evaluation. This corpus consists of

1580 utterances plus 100 queries collected from 4 different

African languages. Finally, the evaluation of the system has

been conducted on the development and test sets of the Medi-

aeval 2013 database.

The QqE-STD task requires the systems to perform lan-

guage independent audio search. Given an audio query, sys-

tems should be able to locate the appropriate files and the lo-

cation of the query term within the audio files. We evaluate

the system performance using Term Weighted Value (TWV)

as proposed by NIST in [19]. In this paper we show the

maximum term weighted value (MTWV) and the actual term

weighted value (ATWV), which are the primary metrics of the

SWS-2013 evaluation.

Initially we evaluate the gain obtained by each of our pro-

cessing steps on the development dataset. The Baseline sys-

tem uses only the SA model and the standard cosine simi-

larity measure. Alternatively, Baseline + DMatrix takes into

account the inter-cluster matrix for computing the cosine sim-

ilarity. Finally, the last system evaluated also takes into ac-

count the TA model. Table 1 shows how both additions help

to increase the resulting performance, being remarkable the

gain obtained by taking into account both acoustic models.

With respect to the normalization step, Table 2 shows the

complete set of results obtained by our best system using dif-

ferent normalization functions. We can see how CDF equal-

ization obtains better results than the Z-normalization. In ad-

dition, we include the results from other two campaing sys-

tems. In one hand, GTTS System [20] is the top scoring sys-

tem of the evaluation but is based on fusion of supervised

phonetizers. On the other hand, we include the top scoring

purely unsupervised system: CUHK [21].

Finally, Figure 2 shows the DET curves for the systems

shown in Tables 1 and 2. The curves are deliberately short

because the system is defined to limit the number of hypothe-

sized hits in order to reduce highly penalizing false alarms in

the output. When comparing the figures it is important to note

the big improvement of combining the TA model with the SA

model. Also important is the change of tilt resulting from

applying CDF normalization. While in the lower false-alarm

region the Z-norm seems to perform better, when false-alarms

increase, and in overall, the DCF normalization achieves best

results.

System CDF norm. Z norm.

Baseline (SA model) 0.1699-0.1688 0.1606-0.1593

B.L. + DMatrix 0.1868-0.1865 0.1734-0.1734

B.L. + DMatrix + TA 0.2878-0.2863 0.2693-0.2690

CUHK System [21] 0.367-0.367 0.306-0.304

GTTS System [20] 0.4174-0.4078 0.3992-0.3806

Table 1. MTWV-ATWV scores on the development set for the

different systems, using both proposed normalizations

Normalization Dev. set Eval. set

CDF equalization 0.2878-0.2863 0.2688-0.2673

Z-normalization 0.2693-0.2690 0.2561-0.2520

Table 2. Complete system results: MTWV-ATWV for the pro-

posed system (SA model + DMatrix + TA Model) using both

proposed normalization schemes
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4. CONCLUSIONS

In this paper, we have presented a system for query-by-

example spoken-term detection on zero-resource languages

that uses information obtained from the spectral configura-

tion of the signal, as well as information about the temporal

evolution of the acoustic features. The fusion of both knowl-

edge sources improves significantly the performance of the

baseline system. In addition, we have extended the standard

measure for comparing posterior features by incorporating

a distance matrix into the dissimilarity computation, ob-

taining an additional extra performance boost of about 9%

percent relative over the baseline approach. Finally, we have

presented a different method for score normalization of the

resulting hits for each query. Overall, the proposed system

improves in 69% relative with regard to the considered base-

line approach and achieved very competitive results within

the Mediaeval SWS 2013 evaluation.
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