
CHANNEL ADAPTIVE PULSE SHAPING FOR OQAM-OFDM SYSTEMS

Martin Fuhrwerk and Jürgen Peissig

Institute of Communication Technologies

Leibniz Universität Hannover

{fuhrwerk,peissig}@ikt.uni-hannover.de

Malte Schellmann

Huawei European Research Center

Munich

malte.schellmann@huawei.com

ABSTRACT

Theory predicts a gain in transmission performance, when

adapting pulse shapes of Offset Quadrature Amplitude Mod-

ulation (OQAM) Orthogonal Frequency Division Multiplex-

ing (OFDM) systems to delay and Doppler spread in doubly-

dispersive channels. Here we investigate the quantitative

gains in reconstruction quality and bit error rate (BER) with

respect to subcarrier spacing and channel properties. It is

shown that it is possible to reduce the uncoded BER by a

factor of more than two and the coded BER by a factor of

at least four, utilizing only two different pulse shapes. The

simulation results show that channel adaptive pulse shaping

for OQAM-OFDM systems is a promising concept for future

mobile communication systems.

Index Terms— OQAM-OFDM, Pulse shaping, Proto-

type filter, FBMC

1. INTRODUCTION

An ever growing demand for high data rates with the ubiqui-

tous need for mobility drives recent wireless communication

systems to deliver adequate solutions. The application of

multiple antenna scheme technologies as well as establishing

an increased cell density and efficient utilization of avail-

able time and frequency resources can provide a significant

contribution towards a more efficient utilization of spectrum.

Currently deployed multi-carrier systems based on Cyclic-

Prefix OFDM (CP-OFDM), e.g. LTE, DVB-T or WiFi, suffer

from high out-of-band emissions due to the inherent rectan-

gular pulse shaping. This increases the need for guard bands

for interference protection leading to an under-utilization of

the spectrum. One approach to enhance spectral efficiency is

to utilize OQAM-OFDM with flexible pulse shaping based on

Filter Bank Multi-Carrier (FBMC). OQAM-OFDM allows to

use arbitrary pulse shapes in contrast to CP-OFDM, enabling

to reduce side lobes and thus improves the coexistence capa-

bilities of a communication system with adjacent or in-band

interferer [1] and is more robust to inter carrier interference

(ICI). However, OQAM-OFDM systems are more vulnera-

ble to intersymbol interference (ISI) due to the absence of a

cyclic prefix.

A theoretical analysis of the impact of doubly-dispersive

channels on the performance of FBMC systems has been

made in [2] by Strohmer and Beaver. They obtain the opti-

mal lattice grid structure and pulse shape for certain channel

environments. Another approach to minimize the impact of

doubly-dispersive channels on FBMC systems has been pre-

sented in [3]. Here a transmission scheme based on Gaussian

pulse shape and adaptive lattice grid density is presented.

In [4] the performance of the Isotropic Orthogonal Transform

Algorithm (IOTA) based on extended Gaussian functions

(EGF) for selected time and time-frequency dispersive chan-

nels is compared to CP-OFDM. It is shown that pulse shape

adaptation with respect to channel state information can actu-

ally improve the system performance.

In this work we investigate the quantitative gains achiev-

able by channel adaptive pulse shape selection for FBMC

systems. Therefore we consider several pulse shapes from

literature suggested for OQAM-OFDM and assume its fixed

lattice grid for a reduced parameter set and signaling over-

head. The influence of doubly-dispersive channels on the

intrinsic interference of FBMC systems is studied in terms

of reconstruction quality and bit error rate with respect to

channel properties and subcarrier spacing.

The rest of the paper is organized as follows. In section 2

the OQAM-OFDM system model and its intrinsic interfer-

ence are described, followed by an overview on the applied

prototype filter functions in section 3. The simulation re-

sults are discussed in section 4 and finally summarized in the

conclusion.

2. SYSTEM MODEL

In this section, we first provide a description of the system

model applied in this paper. Second the metric for evaluation

of the reconstruction performance in doubly-dispersive chan-

nels is derived. As this work merely focuses on the influence

of the intrinsic interference of OQAM-OFDM systems, the

noise is neglected in our investigation. Therefore, the general

time-discrete system model considered in this paper can be

described by

r(n) =
∑

τ

h(n, τ)s(n− τ), (1)



whereby the received signal r(n) at sample index n is an

aggregation of the transmit signal s(n), passing through the

time-variant mobile communication channel h(n, τ). τ refers

to the channel tap indices normalized to the sampling period.

For an OQAM-OFDM system, the critically sampled

transmit signal s(n) is given by

s(n) =

∞∑

m=−∞

K
2
−1

∑

k=−K
2

jm+kdk,mpk (n−mτ0K) (2)

where dk,m is a real valued OQAM symbol mapped to sub-

carrier k at the m-th FBMC symbol. K indicates the number

of total subcarriers and pk(n) is the real valued and symmetric

pulse shape p(n) = p∗(−n) modulated to subcarrier k given

by

pk(n) = p(n)e−j2πν0k
n
K . (3)

Here, τ0 and ν0 are the normalized symbol and subcarrier

spacing, respectively. These parameters specify the applied

lattice grid relative to the symbol duration and are set to τ0 =
0.5 and ν0 = 1 for OQAM-OFDM, so that τ0ν0 = 0.5
holds. Under the mandatory condition for the pulse shape

p∗(−n) = p(n) met for OQAM-OFDM, the received real

OQAM symbols d̃k̃,m̃ can be detected utilizing the matched

filter as below:

d̃k̃,m̃ = ℜ
{

j−(m̃+k̃)
∞∑

n=−∞

r(n)p∗
k̃
(n− m̃τ0K)

}

. (4)

For channel free transmission, i.e. r(n) = s(n), and by appli-

cation of the ambiguity function A(τ, ν) for real valued pulse

shapes

A(τ, ν)=
∞∑

n=−∞

p(n)p∗(n−τK)e−j2πν n
K ; τK ∈ Z, ν ∈ R, (5)

(4) can be split into a data and an interference part according

to

d̃k̃,m̃ = ℜ
{

j−(m̃+k̃)
∞∑

n=−∞

s(n)p∗
k̃
(n− m̃τ0K)

}

= ℜ
{

∞∑

m=−∞

K
2
−1

∑

k=−K
2

j−(m̃+k̃)jm+kdk,m

·
∞∑

n=−∞

pk (n−mτ0K) p∗
k̃
(n− m̃τ0K)

︸ ︷︷ ︸

A((m̃−m)τ0,(k̃−k)ν0)

}

= dk̃,m̃ℜ{A(0, 0)}
︸ ︷︷ ︸

data

+
∑

µ

∑

κ
|µ|+|κ|6=0

dk̃−κ,m̃−µℜ
{

j−(κ+µ)A(µτ0, κν0)
}

︸ ︷︷ ︸

intrinsic interference

,(6)

where µ = m̃−m and κ = k̃ − k are the difference between

the OQAM symbols and subcarriers, respectively.

To measure the reconstruction performance the signal-

to-interference ratio (SIR) is used, which determines the

amount of intrinsic interference power σ2
I , also known as

orthogonality parameter [4], induced to the demodulated data

of d̃k̃,m̃ of power σ2
s . It is defined according to

SIR =
σ2
s

σ2
I

=
σ2
s

∑

µ

∑

κ
|µ|+|κ|6=0

σ2
I (µ, κ)

, (7)

whereby σ2
I (µ, κ) is the intrinsic interference power inflicted

by the OQAM symbol with symbol and subcarrier offset µ
and κ, respectively, see (6). Assuming E{|dk,m|2} = 1/2,

the average energy σ2 = E{|d̃k̃,m̃|2} received per OQAM

symbol can be obtained from (6) according to

σ2 =
1

2
|ℜ{A(0, 0)}|2

︸ ︷︷ ︸

σ2
s

+
∑

µ

∑

κ
|µ|+|κ|6=0

1

2
|ℜ{j−(µ+κ)A(µτ0, κν0)}|2

︸ ︷︷ ︸

σ2
I
(µ,κ)

. (8)

Now we consider the influence of time-variant channels

h(n, τ). For channels satisfying the WSSUS condition [5],

the SIR is given by

SIR =
σ2
s,h

∑

µ

∑

κ
|µ|+|κ|6=0

σ2
I,h(µ, κ)

, (9)

where σ2
s,h and σ2

I,h are the channel depended data and inter-

ference powers, respectively. As derived in [5], σ2
s,h and σ2

I,h

can be calculated by a two-dimensional convolution of the re-

lated ambiguity function and the channel scattering function

Sh(τ, ν) according to

σ2
s,h =

∑

τ

∑

ν

Sh(τ, ν)|ℜ{A(τ, ν)}|2 (10)

σ2
I,h(µ, κ) =

∑

τ

∑

ν

Sh(τ, ν)

·|ℜ{j−(µ+κ)A(µτ0 + τ, κν0 + ν)}|2. (11)

Note that Sh(τ, ν) is the real-valued product of the Doppler

power spectral density and the power delay profile of the ap-

plied channel.

3. PULSE SHAPE DESCRIPTION

The pulse shapes considered in this work are derived from

truncated prototype filter functions according to

p(n) =

{

pp(n), |n| < γK
2

0, otherwise
, (12)



where pp(n) describes the time-unlimited pulse shape. Here,

γ is the overlapping factor so that the used pulse shape with

odd symmetry amounts to a length of L = γK − 1 samples.

3.1. Phydyas Pulse Shape

The pulse shape, which has been presented first in [6] and

intensively studied within the PHYDYAS project, is a time

limited Nyquist filter obtained by frequency sampling and op-

timized to have a superior stop band attenuation. Due to this

property, the Phydyas pulse shape is a good choice for spec-

trum sharing scenarios. The prototype filter function pp(n)
can be described by a truncated Fourier series with coeffi-

cients al according to [6]

pp(n) = a0 + 2

γ−1
∑

l=1

al cos

(
2πln

γK

)

. (13)

3.2. IOTA Pulse Shape / EGF

The Gaussian prototype filter has ideal energy localization in

the time-frequency grid, but does not satisfy the Nyquist cri-

teria. Therefore, the Isotropic Orthogonal Transform Algo-

rithm (IOTA) is used to transform the non-orthogonal Gaus-

sian function into a prototype filter function which is orthog-

onal after matched filtering at the receiver side. Thereby the

localization property of the Gaussian function is kept. In

this paper we use the closed form solution based on extended

Gaussian functions (EGF) reported in [7], which can be writ-

ten as

pp(n, α) =
1

2

∞∑

k=0

ak,α,ν0

[

gα

(
n

K
+

k

ν0

)

+gα

(
n

K
− k

ν0

)]

·
∞∑

l=0

al,1/α,τ0 cos

(

2πl
n

τ0K

)

. (14)

Here α is the spreading factor of the applied Gaussian

function gα used to adapt the power spreading in the time-

frequency grid and a{·} are real valued weighting coefficients

given in [7].

3.3. Hermite Pulse Shape

Similar to the IOTA pulse shape the Hermite prototype filter is

derived from the Gaussian function. Simulations have shown,

that it provides a better localization property compared to the

IOTA pulse shape, in case both prototype filter functions are

truncated to length L. For the Hermite pulse shape the Gaus-

sian function is weighted with isotropic Hermite functions to

achieve orthogonality [8]. The Hermite pulse shape is build

according to

pp(n) =

NH−1∑

k=0

a4kH4k

(

2
√
π
n

K

)

(15)

with Hl(n) = e−
n2

2
dl

dnl
e−n2

,

where a4k represent the weighting coefficients reported in [8],
dl

dnl being the l-th derivation with respect to n and NH = 4 is

the number of the first isotropic Hermite functions.
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Fig. 1: SIR of the IOTA/EGF with α = 3 in dependence of

normalized delay spread τrms/T and Doppler shift fDT . The

dashed diagonals indicate the SIR which is available in a cer-

tain channel scenario by changing the symbol duration T and

subcarrier spacing ∆f , respectively.

4. SIMULATION RESULTS

First, we investigate the pulse shape dependent SIR in doubly-

dispersive channel environments. Second an analysis of the

overall system performance in terms of bit error rate for a spe-

cific channel setup is provided. All evaluations are performed

with K = 128 and γ = 4 to provide a good compromise

between system complexity and filter truncation effects. Fur-

thermore, we assume perfect time and frequency synchroniza-

tion as well as perfect channel knowledge at receiver side. In

this study a Rayleigh fading channel with an exponential de-

cay power delay profile and Jakes’ Doppler power spectrum

is considered. The related channel scattering function is given

by

Sh(τ, ν) =
e−

τ
Kτ̌rms

τ̌rms

1

πf̌D

√

1−
(

ν
Kf̌D

)2
, (16)

whereby τ̌rms and f̌D denote the delay spread and the maxi-

mum Doppler shift normalized to the symbol duration and the

subcarrier spacing, respectively.

4.1. Reconstruction performance

The SIR is evaluated according to (9) with the channel scat-

tering function (16). An example of the SIR of an IOTA/EGF

pulse shape with α = 3 is illustrated in Fig. 1. The figure

shows how to choose the symbol duration T for an OQAM-

OFDM system to maximize the SIR under a certain channel

environment.
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Fig. 2: Reconstruction performance (SIR) of IOTA/EGF with α = {1, 2, 3}, Hermite and Phydyas pulse shapes for different

channel conditions δ (ref. Fig. 1) at different velocities

Channel scenario

fc 1.8 GHz

τrms 1.2 µs
v [5, 50, 200] km/h

System

parameters

K 128

γ 4

T , ∆f 200 µs, 5 kHz

Effective

channel

parameters

τrms/T 6 · 10−3

fDT [(5/3, 50/3, 200/3) · 10−3]

fD ≈ [8, 83, 3333] Hz

Table 1: Parameter setup for the performance evaluation

of pulse shapes in different channel environments. The

Doppler frequencies represent pedestrians, urban traffic and

high speed.

Assuming the symbol duration T being a free system de-

sign parameter, modifying T will change τ̌rms and f̌D but not

the channel characteristics. Therefore we define the Delay-

Doppler-Spread δ as channel characteristic used in our inves-

tigation according to

δ = τ̌rmsf̌D = τrmsfD. (17)

Therefore f̌D = δ/τ̌rms defines the section line in the two-

dimensional SIR space available for a specific system in a

certain channel. For the channel scenario given in Table 1,

the related Delay-Doppler Spread curves are shown in dotted

lines in Fig. 1 and depicted distinctively in Fig. 2. Depending

on the channel environment δ, the gain from switching pulse

shapes exceeds more than 4 dB for Doppler spread dominated

channels and approximately 2.5 dB for delay spread domi-

nated ones. These differences in gain, when comparing the

two extremes, can be explained by filter truncation effects, as

time-domain filter truncation induces a power spread to the

side lobes in frequency domain which increases the vulnera-

bility to Doppler spreads.

Considering an environment with a certain delay spread but

different Doppler spreads as defined in Table 1, a system de-

sign with a fixed pulse shape for all scenarios would lead to

Modulation 16-QAM

Equalizer One-Tap Zero-Forcing

Encoder Convolutional ([171, 133])

Code rate 2/3

Decoder Hard-bit Viterbi

# of symbols per frame 1000

# of channels per sim 500

Table 2: Simulation setup for the BER performance evaluation

of pulse shapes.

significant performance losses in at least one of these scenar-

ios. For the urban traffic scenario (δ = 10−4) as depicted in

Fig. 2b and for τrms/T = 6 · 10−3, changing pulse shapes

would provide only slight gains in SIR, but an OQAM-OFDM

system can gain either about 2.5 dB in pedestrian environ-

ments (Fig. 2a) or more than 4 dB in high speed environ-

ments (Fig. 2c), in case a change of the applied pulse shape

is allowed. According to the direction parameter and Heisen-

berg uncertainty, Hermite pulse shape and IOTA with α = 2
have approximately the same SIR, which was in good agree-

ment with our investigations. Therefore, IOTA with α = 2 is

not considered in the rest of the investigations.

4.2. System performance

For the BER analysis, we used Monte-Carlo simulations of a

polyphase network based FBMC implementation with the pa-

rameter setup given in Table 2, frame-wide interleaving and

perfect synchronization and channel knowledge. Fig. 3 and 4

depict the uncoded and coded BER, respectively. By a proper

pulse shape selection the uncoded BER can be improved by a

factor of at least two (Fig. 3). By choosing a suitable chan-

nel coding and code rate (Fig. 4), the BER can be decreased

by a factor of more than four in high mobility environments.

These gains can be achieved by utilizing only two different

pulse shapes, namely a IOTA/EGF pulse shape with α = 3 for

Doppler spread and the Phydyas pulse shape for delay spread

dominated channels, respectively.
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Fig. 3: Uncoded BER for a 16-QAM in different channel conditions at different velocities
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Fig. 4: BER for a 16-QAM in different channel conditions at different velocities with convolutional code of rate 2/3

Additionally, all BER curves show the same trend as the cor-

responding SIR plots. Therefore SIR can be suggested to be a

useful tool for the performance evaluation of pulse shapes in

doubly-dispersive channels.

5. CONCLUSION

We quantitatively assessed the gain achievable from adapting

the pulse shape to doubly-dispersive channels, which is sug-

gested from theory [2]. The evaluation results show that by

utilizing only two different pulse shapes, the coded BER can

be reduced by a factor of more than four and the uncoded BER

by a factor of at least two. Additionally it is shown that the

SIR can be suggested to be a useful tool for the performance

evaluation of pulse shapes in doubly-dispersive channels.
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