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ABSTRACT

This paper addresses the performance analysis of two GLRT re-
ceivers in the case where the number of sensors M is of the same
order of magnitude as the sample size N . In the asymptotic regime
where M and N converge towards ∞ at the same rate, the corre-
sponding asymptotic means and variances are characterized using
large random matrix theory, and compared to the standard situation
where N → +∞ and M is fixed. This asymptotic analysis allows
to understand the behavior of the considered receivers, even for rel-
atively small values of N and M .

Index Terms— Multichannel detection, asymptotic analysis,
large random matrices

1. INTRODUCTION

Due to the spectacular development of sensor networks, it is com-
mon to be faced with multivariate signals of high dimension. Very
often, the sample size that can be used in practice in order to perform
statistical inference cannot be much larger than the signal dimension.
In this context, it is well established that a number of fundamental
existing statistical signal processing methods fail. It is therefore of
crucial importance to revisit certain classical problems in the high-
dimensional signals setting. Previous related works include e.g. [1]
and [2] in the source localization using subspace method context, or
[3], [4] in the context of unsupervised detection.

In the present paper, we address the problem of detecting a
known signal corrupted by a temporally white, but possibly spatially
correlated, additive complex Gaussian noise using a large sensor
array. This is an important question that has been extensively ad-
dressed in the past, in the low dimensional signal context ([5], [6],
[7]). Although our results can be used in more general situations,
we focus on the detection of a synchronization sequence transmitted
by a single transmitter in a multipath propagation channel. Using
random matrix methods, we study the behaviour of the classical
generalized likelihood test (GLRT) when the number of sensors M
and the number of samples of the training sequence N are large
and of the same order of magnitude. It is shown that the asymp-
totic behaviour of the relevant statistics is quite different from the
standard situation where N → +∞ while M remains fixed, and
that the performance predicted by the regime where M and N are
large provide results that are reliable for realistic values of M and
N . The large random matrix technics used in this paper are more or
less classical (see e.g. [8], [9]), but our results are of interest in the
field of statistical signal processing.

2. PRESENTATION OF THE PROBLEM

In the following, we assume that a single transmitter sends a syn-
chronization sequence (sn)n=1,...,N through a channel with L
paths, and that the corresponding signal is received on a receiver
with M sensors. The received M -dimensional signal is denoted by
(yn)n=1,...,N . When the transmitter and the receiver are perfectly
synchronized, yn is assumed to be given for each n = 1, . . . , N by

yn =

L−1∑
l=0

hlsn−l + vn (1)

where vn is an additive complex Gaussian noise. Denoting by H
the M × L matrix H = (h0, . . . ,hL−1), Y = (y1, . . . ,yN ) can
be written as

Y = HS + V (2)

where V = (v1, . . . ,vN ) and where S =

 s1 . . . sN
. . .

s2−L . . . sN−L+1


represents the signal matrix. We assume from now on that the sizeN
of the training sequence satisfies N > M + L. In order to simplify
the calculations and notations, we assume that the signal matrix is
orthogonal, meaning that SS∗

N
= IL. In this paper, we study the

classical problem of testing the hypothesis H1 characterized by (2)
against the hypothesis H0 defined by

Y = V (3)

When the additive noise is complex Gaussian, temporally white, but
possibly spatially correlated with unknown covariance matrix, it is
well established (see e.g. [5]) that the generalized maximum likeli-
hood test consists in comparing the statistics ηc,N defined by

ηc,N = − log det
[
IL − (SY∗/N)(YY∗/N)−1(YS∗/N)

]
(4)

to a threshold. If the noise is known to be also spatially white, the
synchronization statistics, normalized by M , becomes

ηw,N = Tr
(
(SY∗/N)(YS∗/N)

)[ 1

M
Tr
(
YY∗/N

)]−1

(5)

As the size of the training sequence should be as small as possible, it
is of practical interest to evaluate the behaviour of the two statistics
when M and N are of the same order of magnitude.

To simplify the analysis made with random matrix theory, we
study the limit distribution of both statistics with the assumption
that the noise (vn)n=1,...,N is temporally and spatially white, i.e.
E(vmv∗n) = σ2IMδ(n−m). We want to be clear with that this as-
sumption is only made when calculating the limit distributions. The
two GLRT statistics remain optimal for their respective noise type.



We also mention that the resulting limit distribution of the statis-
tics under each hypothesis does not, in general, allow us to obtain a
reliable approximation of the performance of the test for small false
alarm probabilities. For this, it is recommended to use large devia-
tions theory (see e.g. [10]), which, in the large dimensional context,
is not well developed. However, our results may be used to predict
the detection probability corresponding to false alarm probabilities
of the order of 0.1. This point is not developed in this paper.

In the following, we denote by W a (N − L × N) matrix for
which the matrix Θ = (WT , ST

√
N
)T is unitary and define the (M ×

N − L) and the (M × L) matrices V1 and V2 by

(V1,V2) = VΘ∗ =

(
VW∗,V

S∗√
N

)
(6)

It is clear that V1 and V2 are complex Gaussian random matrices
with independent identically distributed entries of variance σ2 , and
that the entries of V1 and V2 are mutually independent. Moreover,

VV∗

N
=

V1V
∗
1

N
+

V2V
∗
2

N
(7)

Note that, as N > M + L, then matrix V1V
∗
1

N
is invertible a.s.

3. STANDARD ASYMPTOTIC ANALYSIS

In order to get a better understanding of the similarities and differ-
ences with the more complicated case where M and N converge
towards +∞ at the same rate, to be discussed in section 4, we first
recall some standard results concerning the asymptotic distribution
of the statistics under H0 and H1 when N → +∞ but when M
remains fixed (see e.g. [7] where similar calculations are presented).

3.1. Asymptotic behaviour under hypothesis H0

Under hypothesis H0, ηw,N can be written as

ηw,N = Tr (V2V
∗
2/N) /Tr (VV∗/MN) (8)

Tr(VV∗/MN) converges a.s. towards σ2. Therefore,

ηw,N =
Tr (V2V

∗
2/N)

σ2 + oP (1)
=

Tr (V2V
∗
2/N)

σ2
+ oP (1/N) (9)

and since V2 is a M × L matrix, it appears immediately that the
limit distribution of Nηw,N is a χ2 distribution with 2ML degrees
of freedom. This implies that E(ηw,N ) ' LM

N
and Var(ηw,N ) '

L
N
M
N

. Similarly, ηc,N can be written as

ηc,N = − log det
(
I− (V∗2/

√
N) (VV∗/N)

−1
(V2/

√
N)
)
(10)

WhenN → +∞ andM remains fixed, VV∗/N converges towards
σ2I and 1

N
V∗2 (VV∗/N)−1 V2 converges towards the zero matrix.

Therefore, ηc,N converges a.s. towards 0. In order to characterize
the limit distribution of ηc,N , we use the classical linearization pro-
cedure

ηc,N =
1

σ2
Tr (V∗2V2/N) + oP (1/N)

from which it is clear that ηc,N has the same limit distribution as
ηw,N .

3.2. Asymptotic behaviour under hypothesis H1

When M is fixed while N → ∞, the behaviour of ηw,N under
hypothesis H1 is given by

Theorem 1 ηw,N converges almost surely towards ηw,N defined by

ηw,N =
Tr(HH∗)

1
M

Tr(HH∗ + σ2I)

Moreover, the asymptotic distribution of
√
N(ηw,N − ηw,N ) is a

zero-mean Gaussian distribution with variance κ1, where

κ1 =
2σ6 Tr(HH∗) + (Tr(HH∗))2σ4/M

1
M4 (Tr(HH∗ + σ2I))4

Under hypothesis H1, ηw,N is given by

ηw,N =
Tr
[(

V2/
√
N + H

)(
V2/
√
N + H

)∗]
1
M

Tr
(
YY∗/N

) (11)

The denominator becomes

1

M
Tr

YY∗

N
=

1

M
Tr(HH∗ + σ2I) +

1

M
Tr(HV∗2)/

√
N +

+
1

M
Tr(V2H

∗)/
√
N +

1

M
(TrV1V

∗
1/N − σ2I)

+
1

M
Tr(V2V

∗
2)/N

When N → +∞ and M remains fixed, Tr(YY∗)/MN can be
written as (Tr(HH∗+σ2I))/M +ξ where ξ = OP (1/

√
N). Note

that Tr(V2V
∗
2)/N is OP (1/N) and does not enter into the calcu-

lations in this asymptotic regime. Similarly, the numerator can be
written as Tr(HH∗) + β where β = OP (1/

√
N). This gives us

our expected value.
To calculate the variance, elementary manipulations show that

ηw,N =
Tr(HH∗)

Tr(HH∗ + σ2I)/M
+

1

Tr(HH∗ + σ2I)/M
×

×
[
β − Tr(HH∗)

Tr(HH∗ + σ2I)/M
ξ

]
+OP (1/N)

from which the variance is easily calculated to justify the Theorem.
We now specify the behaviour of ηc,N in this asymptotic regime.

Theorem 2 ηc,N converges almost surely towards ηc,N defined by

ηc,N = log det

(
I +

H∗H

σ2

)
Moreover, the asymptotic distribution of

√
N(ηc,N−ηc,N ) is a zero-

mean Gaussian distribution with variance κ2, where

κ2 = Tr

[
I−

(
I +

H∗H

σ2

)−2
]

(12)

It is easily seen that

ηc,N = log det

(
I +

H∗H

σ2

)
+ oP (1)

Using the linearization procedure, we obtain immediately that

ηc,N = log det

(
I +

H∗H

σ2

)
+Tr

[(
I +

H∗H

σ2

)
∆N

]
+OP (1/N)



where matrix ∆N is given by

∆N = −H∗(HH∗ + σ2I)−1ΓN (HH∗ + σ2I)−1H+

(V∗2/
√
N)(HH∗ + σ2I)−1H + H∗(HH∗ + σ2I)−1(V2/

√
N)

with ΓN = YY∗/N −
(
HH∗ + σ2I

)
. The Theorem follows from

the observation that ‖YY∗/N − (HH∗ + σ2I)‖ → 0 a.s. when
N →∞ and M is fixed, and from standard calculations.

4. ASYMPTOTIC ANALYSIS WHEN M AND N
CONVERGE TOWARDS∞ AT THE SAME RATE

In this section, we assume that M and N converge towards +∞ in
such a way that cN = M

N
converges towards c, where 0 < c < 1

while the number of paths L remains fixed. This hypothesis is of
course consistent with the condition N > M + L. This asymptotic
analysis differs deeply from the analysis in section 3. In particular, it
is no longer true that the empirical covariance matrix YY∗/N con-
verges in the spectral norm sense towards its mathematical expecta-
tion. This, of course, is due to the fact that the number of entries of
this M ×M matrix is of the same order of magnitude than the MN
available scalar observations. We also note that for any deterministic
M ×M matrix A, the L×L matrix 1

N
V∗2AV2 converges towards

0 when N → +∞ and M remains fixed, while this does not hold
when M and N are of the same order of magnitude.

As M is growing, we have to specify how the power of
the useful signal component HS is normalized. In the follow-
ing, we assume that the norms of vectors (hl)l=0,...,L−1 remain
bounded when the number of antennas M increases. This implies
that the signal to noise ratio at the output of the matched filter
S∗Y/

√
N , i.e. 1

L
Tr(H∗H)/σ2, is a O(1) term in our asymptotic

regime. We however mention that the received signal to noise ratio
1
N
Tr(HSS∗H∗/Mσ2) converges towards 0 at rate 1

M
when M

increases. Before studying the behaviour of the statistics, we first
review some useful results [8],[11],[9].

4.1. Background material.

Proposition 1 We consider an (M × N) random matrix X with
variance σ2 i.i.d. complex Gaussian entries. Then,

λmin (XX∗/N)→ σ2(1−
√
c)2 a.s. (13)

Moreover, for each pair of unit norm deterministic M dimensional
vectors u and v it holds that, for i = 1, 2,

u∗ (XX∗/N)
−i

v =
u∗v

σ2i(1− cN )2i−1
+OP (

1√
N

) (14)

1

N
Tr (XX∗/N)

−i
=

cN
σ2i(1− cN )2i−1

+OP (
1

N
) (15)

We note that if cN → 0, the conventional results obtained when M
remains fixed are recovered. We finally mention the following result.

Proposition 2 We consider a M × L random matrix
Z = (z1, . . . , zL) with variance σ2 i.i.d. complex Gaussian entries.
Then, for each random M ×M matrix A independent from Z for
which supM ‖A‖ < +∞, it holds that

z∗kAzl
N

− δk−l σ2 1

N
Tr(A)→ 0 a.s (16)

EZ

∣∣∣∣z∗kAzl
N

− δk−l σ2 1

N
Tr(A)

∣∣∣∣2 =
σ4

N

1

N
Tr(AA∗) (17)

where EZ represents the mathematical expectation w.r.t. the entries
of Z.

4.2. Hypothesis H0.

The behaviour of ηw,N under H0 is given by the following theorem

Theorem 3 ηw,N − LcN converges almost surely towards 0, and
the asymptotic distribution of

√
N (ηw,N − LcN ) is a zero mean

normal distribution with variance LcN .

We take (8) as a starting point. Tr(V2V
∗
2/N) converges a.s. to

σ2ML/N whereas Tr(VV∗/NM) converges to σ2, which gives
us our expected value. WhenM,N →∞, Tr(VV∗/NM)−σ2 =

OP (1/
√
MN) = OP (1/N). Therefore,

ηw,N =
Tr(V2V

∗
2/N)

σ2
+OP (1/N)

which justifies the Theorem. We now specify the behaviour of ηc,N
in our asymptotic regime.

Theorem 4 ηc,N converges almost surely towards

ηc,N = L log
(

1
1−cN

)
, and the asymptotic distribution of

√
N
(
ηc,N − ηc,N

)
is a zero mean normal distribution with vari-

ance LcN
1−cN

.

We use (7), (10) and the matrix inversion lemma, and obtain that

ηc,N = log det
(
IL + V∗2/

√
N (V1V

∗
1/N)

−1
V2/
√
N
)

In the following, we denote by FN the L× L matrix defined by

FN = V∗2/
√
N (V1V

∗
1/N)

−1
V2/
√
N (18)

We provide only a sketch of proof. We first evaluate the almost sure
behaviour of ηc,N . We use Proposition (1) and Proposition (2) for
Z = V2/

√
N and A = (V1V

∗
1/N)−1. By (13), matrix A satisfies

supM ‖A‖ < +∞ almost surely for M,N large enough, and we
deduce immediately that L× L matrix FN converges almost surely
towards the matrix cN

1−cN
IL. We have used that, for a fixed L, the

ratio M
N−L behaves as cN . This justifies the first statement of the

Theorem.
We do not prove the asymptotic Gaussianity of the ηc,N , but pro-

vide only an informal justification of the expression for the asymp-
totic variance. Using a standard first order expansion of ηc,N ,

ηc,N = L log
1

1− cN
+Tr ((1− cN )∆N ) +OP (1/N) (19)

where ∆N represents the difference between matrix FN defined
by (18) and matrix cN

1−cN
IL. Tr ((1− cN )∆N ) can be written as

Tr ((1− cN )∆N ) = (1− cN )
∑L
l=1 εl where

εl = V∗2,l/
√
N (V1V

∗
1/N)

−1
V2,l/

√
N − cN

1− cN
and V2,l represents column l of matrix V2.

By Proposition 1, εl can be written as

εl =V∗2,l/
√
N (V1V

∗
1/N)

−1
V2,l/

√
N

− σ2

N
Tr (V1V

∗
1/N)

−1
+OP (1/N)

By (17), it holds that the expectation of |εl|2 w.r.t. V2,l is given by

EV2,l |εl|
2 =

σ4

N

1

N
Tr (V1V

∗
1/N)

−2
+ oP (1/N)



Taking the expectation w.r.t. V1 and using (15), we obtain that the
variance of εl is equal to cN

(1−cN )3
. It is clear that the random vari-

ables (εl)l=1,...,L are decorrelated. Therefore, the asymptotic vari-
ance of (1− cN )

∑L
l=1 εl coincides with LcN

(1−cN )
as expected.

We recall that if M is fixed, Nηw,N and Nηc,N both behave
like a χ2 distribution with 2ML degrees of freedom. Therefore, the
behaviour of ηc,N in the two asymptotic regimes deeply differ. How-
ever, if cN → 0, − log(1 − cN ) ' cN , and the asymptotic means
and variances of ηc,N tend to coincide. For ηw,N , the asymptotic
expected value and variance in the two regimes are the same, but
when M → ∞, the asymptotic distribution is a normal distribution
instead of a χ2 distribution.

4.3. Asymptotic behaviour under hypothesis H1.

The limit distribution of the statistics ηw,N under hypothesis H1,
defined by (11), is given by the following result.

Theorem 5 ηw,N converges almost surely towards ηw,N defined by

ηw,N =
Tr(HH∗)

1
M

Tr(HH∗ + σ2I)
+ LcN

Moreover, the asymptotic distribution of
√
N(ηw,N − ηw,N ) is a

zero-mean Gaussian distribution with variance κ3, where

κ3 =
2σ2 TrHH∗ + σ4LcN
1
M2 [Tr(HH∗ + σ2I)]2

= κ1 + LcN +OP (1/N) (20)

Since M is of the same order of magnitude as N , the term
Tr(V2V

∗
2/N) in the numerator of (11) is no longer negligeable.

In the denominator, Tr(V1V
∗
1 + V2V

∗
2)/MN still converges to-

wards σ2, but Tr(HH∗/M) is now an OP (1/N) term. For sake of
comparison, however, we will keep the Tr(HH∗/M) term in the
expression of the expected value and variance. This justifies the first
statement of the Theorem.
To calculate the variance, we note that the fluctuations of the denomi-
nator of (11) are faster than those of the numerator. In the numerator,
Var(Tr(V2H

∗/
√
N)) = Var(Tr(HV∗2/

√
N)),= σ2

N
Tr(HH∗),

and Var(Tr(V2V
∗
2/N)) = σ2ML

N2 . These are all OP (1/N) terms,
whereas the corresponding terms, scaled by M, in the denomina-
tor, are OP (1/N2) terms. The asymptotic variance can thus be
expressed as

Var(Tr(HV∗2/
√
N + V2H

∗/
√
N + V2V

∗
2/N))

1
M2 [Tr(HH∗ + σ2I)]2

Since the three terms in the above expression are decorrelated, the
variance of ηw,N equals the sum of the variances of the three terms.
Elementary calculations lead to (20). The behaviour of ηc,N under
hypothesis H1 is given by the following result.

Theorem 6 ηc,N converges almost surely towards ηN,1 defined by

ηc,N = L log
1

1− cN
+ log det

(
I + H∗H/σ2)

Moreover, the asymptotic distribution of
√
N(ηc,N−ηc,N ) is a zero-

mean Gaussian distribution with variance LcN
1−cN

+ κ2, where κ2 is
defined by (12).

We again just give a sketch of proof. Defining the L× L matrix

GN =
(
H + V2/

√
N
)∗

(V1V
∗
1/N)

−1
(
H + V2/

√
N
)

(21)

we obtain after some standard algebra that, under hypothesis H1,
ηc,N can be written as ηc,N = log det (IL + GN ) In order to eval-
uate its almost sure behaviour, we expand GN . Using (14), it is
easy to check that the matrix H∗ (V1V

∗
1/N)−1 H converges to-

wards 1
σ2(1−cN )

H∗H and that the matrix

(V2/
√
N)∗ (V1V

∗
1/N)−1 H converges towards the zero matrix.

As we already showed that matrix FN converges towards cN
1−cN

IL,
it holds that IL+GN behaves as 1

1−cN
(IL+H∗H/σ2) as expected.

In order to prove the asymptotic Gaussianity of ηc,N , we again
use the linearization trick, and express ηc,N − ηc,N as

ηc,N−ηc,N = Tr
(
(1− cN )(IL + H∗H/σ2)−1∆N

)
+OP (1/N)

where matrix ∆N is defined by

∆N = GN −
(

cN
1− cN

I +
H∗H

σ2(1− cN )

)
ηcN−ηc,N can be expressed as the sum of four terms that are asymp-
totically decorrelated.

The asymptotic Gaussianity and the evaluation of the variance of
three of these terms can be addressed as before using Propositions
1 and 2. The proof of the asymptotic Gaussianity of the contribu-
tion of the term H∗(V1V

∗
1/N)−1H to ηcN − ηc,N needs to es-

tablish a central limit theorem for
∑L
l=1 a∗l (V1V

∗
1/N)−1bl where

(al,bl)l=1,...,L are bounded deterministic vectors. For this, we use
an approach developed by Pastur and his colleagues ([12] and [9],
see also [13] where the approach is used to study the mutual infor-
mation of large MIMO systems).

Interestingly, it is seen that the asymptotic variances of both
ηw,N and ηc,N coincide with the sum of their asymptotic variance
in the standard regime N → +∞ and M fixed, and an extra term
which coincides with their asymptotic variance under H0.

5. NUMERICAL RESULTS

In this section, we validate the relevance of the Gaussian approxi-
mation of section 4 and compare it with the asymptotic distributions
obtained by the standard asymptotic analysis of section 3.

In our numerical experiments, we have calculated the theoreti-
cal expected values and variances as well as their empirical values,
evaluated by Monte Carlo simulations with 30.000 trials. In the ex-
periments, L has been fixed to 5, M to 40, while N is increased,
starting from N = 80. Moreover, to avoid variance problems due to
channel variations, the channel matrix H is fixed through all trials.

Figures 1 and 2 compare the theoretical variances with the em-
pirical variance for ηw,N and ηc,N respectively. When cN is small,
the two theoretical variances coincide, as expected, and are very
close to the true variance. When cN is large, the assumption that M
is small compared to N is no longer valid, and the classical asymp-
totic analysis fails. It is interesting to note that even for small values
of M,N , the theoretical variance obtained by considering M,N the
same order of magnitude is close to the empirical variance.

If N,M are increased while keeping cN constant, the empirical
results are even closer to the theoretical values, since the number of
samples is larger.
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Fig. 1. Variance of ηw,N under hypothesis H1
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Fig. 2. Variance of ηc,N under hypothesis H1

Note that despite the white noise assumption for calculating the
limit distribution, detailed in section 2, we are able to characterize
the limit distribution of both statistics in a satisfactory way.

Due to lack of space, we omit the results for the expected values
and the variance underH0. We mention however that for both statis-
tics, the theoretical expected values and variances calculated with
the assumption that M,N are of the same order of magnitude, are
very close to their empirical counterparts.

To validate the asymptotic Gaussianity of the synchronisation
statistics, Figure 3 contains a histogram of the empirical values of
ηc,N under H1, along with a normal distribution of the theoretical
expected value and variance, for the assumption N,M → ∞ at the
same rate. Similar results also apply for the other statistics, with the
same assumption, and for hypothesis H0.

6. CONCLUSION

In this paper, the asymptotic distributions of two generalized like-
lihood ratios are studied. The corresponding asymptotic expected
values and variances are characterized when the number of samples
in the training sequence N increases at the same rate as the number
of sensors M . It is seen that the asymptotic means and variances are
close to their empirical counterparts for realistic values ofM andN .
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