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ABSTRACT

High-speed videos are essential to many types of scienti-
fic investigations. However, using high-speed cameras to
directly acquire these videos is prohibitively expensive in
many circumstances. This paper proposes a compressive
sensing-based method for obtaining high-speed videos
using low-speed cameras, which we call the Per-Pixel
Mirror-Based Acquisition Method. The proposed tech-
nique is light efficient and generates time-independent
samples. We compare the reconstruction results of the
proposed technique with other techniques available in the
literature in terms of signal-to-error (SER) ratios, for na-
tural and synthetic videos. For the tested real videos, the
proposed method provided an improvement in SER ran-
ging from 3 to 28 dB, with respect to known techniques
such as the flutter shutter and the per-pixel shutter. The
actual improvement is higher for higher levels of sparsity
in the used transformed representations and for lower
used sub-sampling rates.

Index Terms— compressive sensing, computational
camera, high-speed imaging, video acquisition.

1. INTRODUCTION

High-speed cameras are expensive and demand light ef-
ficiency and high bandwidths. Recently, techniques ba-
sed on computational photography and compressive sen-
sing [1, 2, 3] have been used in the design of high-speed
cameras with low speed and cheap sensors. These te-
chniques use a regular low speed camera to acquire me-
asurements and, then, use linear combinations of these
measurements to obtain high-speed video samples. Con-
sidering that the video is approximately sparse in some
known domain, they reconstruct the high-speed video
based on the optimization of some sparsity measure.

Unfortunately, the acquisition methods used for these
techniques have some limitations. First, a large amount
of light is thrown away. Second, the light information
is added within the frames, what makes the measure-
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ments time-dependent. In this paper, we present a new
acquisition method of linear measurements that overco-
mes these limitations. The proposed acquisition method
uses a design of mirrors to reflect the light of some pixels
into other pixels. This way, light is not thrown away and
measurements can be time-independent, what leads to
better reconstruction results.

2. COMPRESSIVE SENSING

Compressive sensing [4, 5] is a method of acquisition and
representation of signals at a rate significantly lower than
the Nyquist rate. The acquisition is made from limited
linear projections, a process that can be represented by
the multiplication of a measurement matrix with the ori-
ginal signal. The measurement matrix has significantly
fewer rows than the original signal. The signal is then
reconstructed by a optimization process, using some me-
asure of sparsity.

Let x be a signal of size N , k-sparse in the domain Ψ,
and s the representation of x in the basis Ψ, i.e. x = Ψs.
Notice that s has only k non-zero elements, with k � N .
Let y be the linear projection of x over a matrix Φ of
size M ×N (M < N), which we can represent as:

y = Φx = ΦΨs = Θs, (1)

where Θ = ΦΨ is an M × N matrix. We call Φ the
measurement matrix. This is the acquisition process,
where y has only M linear measurements of x.

Based on the measurements y, we want to reconstruct the
signal x. Knowing x is sparse in the basis Ψ, we want to
find the sparsest representation s′ that satisfies y = Θs′.
This is an optimization problem that can be computatio-
nally expensive. Surprisingly, the `1-norm minimization
leads to a sparse solution and there are algorithms that
solve this optimization problem in polynomial time.

In this paper, we use an algorithm known as Total Va-
riation minimization (TV) [6] in which the average sum
of finite differences in different dimensions are minimi-
zed. The TV algorithm used in this work is based on the
optimization problem given by

ŝ = armin(||s′||TV ) subject to y = Θs′, (2)



Fig. 1. Flutter Shutter acquisition method, adapted
from [2]. The 1st row corresponds to the traditional ac-
quisition in video cameras. Using the pattern of turned-
on sub-frames depicted on the 2nd row, we obtain the 3rd
row by making a linear combination of the sub-frames at
the end of integration time.

where Θ = ΦΨ depends on the acquisition method, Φ re-
presents the acquisition method, and Ψ is the transform
basis. For the proposed work, we choose the TVAL3 algo-
rithm [6]. This choice is based on the fact that, according
to the extensive comparisons in [7], TVAL3 is considera-
bly faster than the other TV minimizations and results
in comparable or higher objective image qualities.

3. METHODS FOR VIDEO ACQUISITION

In this section, we describe common methods to acquire
linear measurements from video cameras. Let N be the
spatial resolution, FPS the Frame Per Second rate, and
T the total integration time of the camera (T = 1

FPS ).
The sub-frame is the minimum exposure time unity, cor-
responding to equals divisions of the frame time. k is the
number of sub-frames in a frame.

Some currently available video cameras (e.g. Point Grey
Dragonfly2 1), allow a good control of the sensor expo-
sure. This is done by turning on and off the light flow in
the array of sensors in a rate higher than the FPS of the
camera. This method is known as Flutter Shutter (FS).

In the FS method, we can turn each sub-frame on and off
individually. At the end of the integration time (T), we
obtain an N-length image in which each pixel contains
all the light corresponding to the turned-on sub-frames.
This acquisition method is originally used with 67% of
the sub-frames turned on [2], which does not correspond
to a perfect light efficiency. An illustration of the FS
acquisition scheme is presented in Figure 1.

1http://ww2.ptgrey.com/IEEE-1394/dragonfly-2

Fig. 2. PPS2 scheme, adapted from [1]. The 3 rows
correspond respectively to the traditional acquisition in
video cameras, the pattern of turned on and off pixels for
each sub-frame, and this pattern applied to the scene. At
the end of the integration time, we get a linear combina-
tion of the sub-frames with the corresponding patterns.

Another acquisition method is the Per-Pixel Shutter
(PPS). In this method, we can turn on and off each one
of N pixels separately for each sub-frame. This allows
a greater exposure control than what is achieved by the
FS method. Commercial cameras do not yet have an
internal device that implements this process. So, gene-
rally, an external optical device is added to the camera
optical system. The most commons devices are made
with a Digital Micro-mirror Device (DMD) [8].

In the literature, the PPS method is used in 2 configura-
tions. In the first one (PPS1), for each frame, each pixel
can only be turned on in one of the sub-frames. This
way, at the end of the frame time, each of the N pixels
receives light once. Hence, each sub-frame does not have
overlapping pixels, thus keeping the time independence
of the sub-frames. The Flexible Voxels [9] and a dictio-
nary learning technique proposed by Hitomi et al. [3] use
this configuration. The disadvantage of PPS1 is that a
big portion of the light information is thrown away, i.e.
for k sub-frames only (100/k) % of the light is kept.

In the second configuration of the PPS method (PPS2),
the pixels are turned on and off independently of the
other sub-frames. At the end of the integration time
(T), we obtain an image that, for each pixel, contains
light information of different sub-frames. The computa-
tional cameras techniques Single Pixel Camera [10] and
Programmable Pixel Compressive Camera [1] use this ac-
quisition method configuration. PPS2 has light informa-
tion loss of approximately 50%. Also, there is no time-
independence among the sub-frames. Figure 2 depicts
the PPS2 acquisition scheme.



Fig. 3. PPM acquisition scheme for k = 4 sub-frames
per frame. Each 4 by 5 matrix represents the mirror
pattern of each sub-frame. The row below shows the sets
of pixels chosen to receive the light. For each sub-frame,
the mirrors in the matrix of a certain color redirect the
light to the pixels of same color (i.e., the pixels receive
the sum of the light from the mirrors of the same color).

4. PER-PIXEL MIRROR-BASED
ACQUISITION METHOD

The acquisition methods presented in the previous sec-
tion have two disadvantages. First, a big amount of
light information is lost. Second, sub-frames are time-
dependent because the light information from different
sub-frames is added. To tackle these limitations, we pro-
pose a new acquisition method of linear measures called
Per-Pixel Mirror-Based (PPM) acquisition method.

To implement the PPM method, we first have to propose
a new device composed of micro-mirrors with a better an-
gular precision than the mirrors in DMDs. This proposed
high-precision digital micro-mirror device (HP-DMD) is
composed of a micro-mirror array with one mirror for
each pixel in the camera. Each mirror can redirect the
light it receives to any other pixel and change its direc-
tion as fast as the sub-frame period. Notice that the
HD-DMD can simulate the behavior of a DMD and, the-
refore, can be used for all previous acquisition methods.

In each sub-frame of PPM, we choose a set of N/k pixels
to receive light from the mirrors of HP-DMD. Each pixel
of this set receives light of k different random mirrors, in
such a way that all mirrors redirect light. For the next
sub-frame time, we choose another set of N/k pixels to
receive light from the mirrors and we redirect the mirrors
to this other set of pixels. We repeat this process for all
k sub-frames, until we complete the N pixels at the end
of the frame. The PPM scheme is shown in Figure 3.

Unlike FS and PPS, which turn off the light absorption,
the proposed technique only redirects light from one set
of pixels to another. In other words, this technique does
not throw light away like the other techniques, but only
redirects it. Notice that all k sets of pixels receive light
at different sub-frame times. So, the different sets of N/k
pixels are time-independent from each other.

We test two configurations of this technique. In the first,

PPM1, the same pattern of random mirrors is chosen for
each sub-frame. In the second, PPM2, the pattern of
random mirrors changes for each sub-frame, as shown
in Figure 3. For comparison, Table 1 shows the light
efficiency and time-independence characteristics of the
acquisition methods FS, PPS1, PPS2, and PPM.

Table 1. Light efficiency and time dependency of the
acquisition techniques tested in this work.

Acquisition Light Time
Method Efficiency Independence

FS 67% No
PPS1 (100/k)% Yes
PPS2 50% No
PPM 100% Yes

5. SIMULATION RESULTS

In our tests, we use an implementation of the optimiza-
tion algorithm TVAL3 for 3D vectors (TV3D) [6]. The
TV3D takes advantage of the video redundancies in time
and space. To test the acquisition methods, we used
synthetic and natural videos. Note that in both cases
the acquisition process itself was simulated by compu-
ting the set of measurements as linear combinations of
isolated pixels taken from the complete reference videos.
The reconstructed videos were obtained from the simu-
lated measures only and compared to the reference ones.

The synthetic videos are composed of a sequence of flat
objects, consisting of rectangles and ellipses (phantoms).
Figure 4(a) shows an example of a sub-frame of this type
of video. The position, size, and intensity of some of
these objects are varied to represent their movement and
to illustrate possible occlusions. Four different sizes of vi-
deos were used in the tests: (100×100 pixels) × 128 fra-
mes, (100×100 pixels) × 256 frames, (200×200 pixels)×
128 frames, and (200×200 pixels) × 256 frames. We
tested all acquisition methods (FS, PPS1, PPS2, PPM1,
and PPM2) using 4 sub-sampling rates: 2×, 4×, 8×, and
16×, which correspond to acquiring 50%, 25%, 12.5%,
and 6.25% of the samples, respectively.

To compare the acquisition methods, we take the signal-
to-error ratio (SER) between reconstructed and original
sub-frames and calculate the average SER for the video.
The results for the synthetic videos are shown in Table 2.
PPM2 presents the best results among all tested acquisi-
tion methods, for all sub-sampling rates. In most cases,
PPM1 shows the second best performance of the group.
The exception corresponds to 2× sub-sampling rate, in
which case the FS method has the second best perfor-
mance. Nevertheless, FS shows a poor performance for
sub-sampling rates higher than 2. Other exception is for
PPS2, which shows good results at higher sub-sampling



Table 2. Average SER (dB): reconstructed synthetic videos.

Video Acquisition Sub-Sampling Rate
Size Method k = 2 k = 4 k = 8 k = 16

FS 43.5 7.4 3.5 3.4
100× PPS1 10.5 4.8 3.0 2.4
100× PPS2 10.5 11.1 7.8 6.6
128 PPM1 28.1 21.4 12.0 4.7

PPM2 70.8 51.3 35.4 10.3

FS 43.0 7.4 4.5 3.2
100× PPS1 10.4 4.9 3.0 2.4
100× PPS2 10.5 11.5 8.0 6.6
256 PPM1 26.2 20.7 13.2 4.7

PPM2 77.5 51.3 33.5 9.6

FS 38.6 9.9 6.7 5.4
200× PPS1 12.5 12.3 3.9 2.5
200× PPS2 12.5 14.3 10.9 9.3
128 PPM1 34.3 26.4 23.3 7.9

PPM2 74.1 55.0 44.0 23.8

FS 42.2 8.7 7.7 6.9
200× PPS1 12.3 12.6 3.9 2.5
200× PPS2 14.1 14.3 10.9 9.3
256 PPM1 37.0 31.1 24.7 9.0

PPM2 73.5 56.9 44.9 23.2

rates. There is a great difference in performance between
PPM1 and PPM2. This shows that choosing a random
mirror pattern for each sub-frame makes a big difference
in SER. Also, results are always better for bigger videos,
but are not affected by the number of frames.

In Figures 4(b)-(d), we show the reconstructed sub-
frames of the 200×200×128 video using the methods
PPS1, PPS2, and PPM2 with a 16× sub-sampling rate.
Notice that PPM2 does a better job at capturing the
sub-frame details by better separating adjacent sub-
frames. PPS2 (and FS, not shown for space limitations),
on the other hand, has problems separating information
from adjacent sub-frames and generates blurred frames.
PPS1 is good at separating adjacent sub-frames, but it
is not able to represent several details of the frame.

(a)original (b) PPS1 (c) PPS2 (d) PPM2

Fig. 4. Test performed with FS, PPS2, and PPM2 using
a 200×200 ×128 video, sub-sampling rate of 16x.

In the second part of the tests, a set of 12 natural vi-
deos, obtained from The Consumer Digital Video Library
(CDVL) database was used. These videos are 1280×720,
50 FPS, and 4:2:0. Given that, for the previous results
the number of frames was not important, we performed
our tests on 16 frames of the luminance component of
these videos. For simplicity purposes, we considered
the methods that performed best for synthetic videos
in higher rates: PPS2 and PPM2. Additionally, we tes-

Table 3. Average SER (dB): reconstructed natural videos.

Video PPS2 PPM2 PPM3
k= 4 8 16 4 8 16 4 8 16

1 11.3 10.0 8.4 12.7 9.1 7.3 15.8 13.2 11.5
2 15.1 13.4 11.9 17.4 12.3 10.0 20.4 17.5 15.3
3 18.4 17.9 14.6 21.7 13.9 11.1 27.1 24.0 21.7
4 12.1 10.2 9.2 15.0 12.1 10.4 17.2 14.9 13.5
5 13.3 12.0 10.1 18.9 11.8 8.4 25.9 22.0 19.6
6 16.7 14.4 13.5 17.3 12.3 9.7 22.0 19.2 17.6
7 11.7 9.6 7.2 14.3 10.4 8.6 19.7 17.8 17.5
8 11.9 10.5 8.8 14.8 9.5 7.0 19.2 16.6 14.5
9 10.6 8.0 5.8 14.0 8.5 5.5 22.9 20.6 18.2
10 16.0 13.1 11.6 20.8 11.6 8.5 28.0 24.1 21.1
11 17.4 14.5 13.4 20.4 14.9 12.2 26.5 23.3 20.5
12 13.2 11.1 9.2 14.8 10.5 8.7 22.3 19.5 16.8

ted a second adaptation of the PPM2 in which a TV2D
reconstruction output of the individual frames is used
as initial solution for the TV3D optimization algorithm.
We call this modification PPM3. SER results are shown
in the Table 3 for sub-sampling rates of 4, 8 and 16.

We can see in Table 3 that for the natural videos, results
are a worse than what was obtained for synthetic videos.
The differences are due to the fact that video sparsity in
TV domain is not as good for natural videos. This decre-
ases the performance of all methods, but PPM2 suffers
a big decrease in performance. Nevertheless, the perfor-
mance is better for the method PPM3.

Figure 5(a) shows a 300×300 zoom area of video 9. No-
tice that in the original frame, there is a shadow that is
moving from behind the man. Figures 5(b), (c), and (d)
show its reconstruction using PPS2, PPM2, and PPM3,
respectively, with a 16× sub-sampling rate (6.25% of the
samples). For the PPS2 reconstructed frame, we can see
that the man’s back is visible, since PPS2 did not se-
parate the content of neighboring frames appropriately.
For the PPM2 frame, the shadow appears, but the frame
is noisy due to difficulties in initialization. For the PPM3
reconstructed frame, a much better result was obtained.

Figure 5(e) shows a 300×300 zoom area of video 8, which
contains a crowd running and, therefore, has a lot of
motion. Figures 5(f), (g), and (h) show its reconstruc-
tion using PPS2, PPM2, and PPM3, respectively, with
a 4× sub-sampling rate (25% of the samples). For the
PPS2 reconstructed frame, we can see that reconstruc-
tion is very blurred with information of subsequent fra-
mes. Also, the PPM2 frame is noisy. For the PPM3
reconstructed frame, we can see its details.

6. CONCLUSION

We proposed a new light-efficient method for acquiring
time-independent linear measures for compressive sen-
sing reconstruction of high-speed videos, and tested our
approach by extracting simulated measurements from
real and synthetic videos. For the tested videos, the pro-



(a) original (b) PPS2 (c) PPM2 (d) PPM3

(e) original (f) PPS2 (g) PPM2 (h) PPM3

Fig. 5. Test performed with PPS2, PPM2, and PPM3 for natural videos (a) v9 @ 16× sampling rate and (b) v8 @
4× sampling rate.

posed method showed better results than the methods
available in the literature, for all considered sub-sampling
rates. For natural high-definition videos, we showed that
the time-independence property of our technique can be
used to improve the quality of reconstructed videos by
including a better initialization procedure.

Future work would include a design of a reconstruction
algorithm that better satisfies the compressive sensing
requirements of restricted isometry property and incohe-
rence. We also want to implement the hardware for ac-
quiring the linear measurements required by our method,
and evaluate its performance in a complete system.
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