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ABSTRACT
Old analog television sequences suffer from a number of degrada-
tions. Some of them can be modeled through convolution with a
kernel and an additive noise term. In this work, we propose a new
blind deconvolution algorithm for the restoration of such sequences
based on a variational formulation of the problem. Our method ac-
counts for motion between frames, while enforcing some level of
temporal continuity through the use of a novel penalty function in-
volving optical flow operators, in addition to an edge-preserving reg-
ularization. The optimization process is performed by a proximal
alternating minimization scheme benefiting from theoretical conver-
gence guarantees. Simulation results on synthetic and real video
sequences confirm the effectiveness of our method.

Index Terms— Blind deconvolution, video processing, opti-
cal flow, proximal algorithms, convex optimization, regularization.

1. INTRODUCTION

The visual contents of videos from the previous decades are
often in a degraded state so that they no longer correspond to
the actual public demand. The observed degradations result
from several physical phenomena which happened during the
sensing, transmission, and recording processes [1–6]. Most of
them can be summarized into two main categories. The first
type of degradation is of random nature and appears in images
as noise, mainly caused by electronic devices. The second
one is deterministic and results in blur and oscillations, whose
common causes are camera defocus, lens aberrations, relative
camera-scene motion, diffusion in sensors, physical or elec-
tronic transmission problems. In this paper, we address the
problem of restoring a video sequence (yt)16t6T , composed
of T successive frames havingN pixels, related to an original
unknown sequence (xt)16t6T through the degradation model

(∀t ∈ {1, . . . , T}) yt = S(h)xt + wt, (1)

where h ∈ RP is the vectorized version of an unknown con-
volution kernel, S is the linear operator which maps the kernel
to its associated Hankel-block Hankel matrix form, and wt ∈
RN represents an unknown additive noise. The objective of
video restoration is to recover (xt)16t6T from (yt)16t6T ,
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while h is unknown. When T = 1, one recovers the well
known still image blind deconvolution problem, that has re-
ceived much attention [7–12]. However, the specific multi-
frame case when T > 1 remains scarcely studied in the lit-
erature. Among existing works, variational approaches based
on alternating minimization strategies have been proposed in
[13, 14]. Both methods deal with the case of a time-varying
positive blur operator, possibly combined with a decimation
[14]. The video restoration process then consists of minimiz-
ing a least-squares criterion augmented with regularization
terms on the sought images and kernels. In [13], the time
variations are assumed to be small, which allows the use of
penalty functions on the difference of consecutive frames, in
addition to a total variation-like prior on each image. More-
over, a parametric model is used on the convolution operator,
so as to enforce a specific form of the kernel, defined a priori
(e.g. a Lorentzian function). In [14], motion effects are taken
into account through a modification of the observation model,
while quadratic penalty functions are chosen for the images
and the kernels with the aim to simplify the minimization pro-
cess. It is also worth mentioning the work in [15] which deals
with a variant of Problem (1) where the convolution kernel is
time-varying while the same scene is observed (up to some
motion effects) in a given group of frames.

The contributions of this paper are (i) a versatile formula-
tion of the blind video sequence restoration problem that in-
cludes an original strategy to account for motion effects, and
(ii) the proposition of a novel efficient optimization algorithm
with proven convergence to solve this problem. Our devel-
opments are grounded on the use of recent advances in non-
smooth optimization, and more specifically on a new hybrid
proximal alternating method. The paper is organized as fol-
lows: Section 2 presents the penalized criterion we minimize.
In Section 3 we introduce the proposed algorithm. Then, Sec-
tion 4 illustrates the applicability of our method through a set
of experiments for video archive contents restoration.

2. PROBLEM FORMULATION

2.1. Minimization problem

Let us define x = (xt)16t6T ∈ RTN . Estimates of h and x
are obtained by solving the minimization problem:



minimize
x∈RTN ,h∈RP

(G(x,h) = Φ(x,h) + Θ(h) + Ψ(x)) . (2)

Hereabove, Φ is a data fidelity term, which is chosen in
accordance with the noise statistics. In this paper, we consider
the case when w = (wt)16t6T is an additive Gaussian noise,
so that Φ is equal to a least squares data criterion, defined, for
every x ∈ RTN and h ∈ RP as

Φ(x,h) =
1

2

T∑
t=1

‖S(h)xt − yt‖2. (3)

Functions Θ and Ψ are regularizing terms acting, respectively,
on the kernel and the image sequence. The design of suitable
penalization functions plays a major role on the quality of the
video restoration process. This will be discussed in the next
two sections.

2.2. Regularization strategy for the kernel

Prior information on the kernel h is incorporated by choosing:

(∀h ∈ RP ) Θ(h) = ιH(h) + ρ‖h‖, (4)

where ρ > 0, and ιH is the indicator function of a closed
convex setH, i.e.,

ιH(h) =

{
0 if h ∈ H
+∞ otherwise.

(5)

Here, the constrained set is the polyhedral set defined as

H =

{
h = (hp)16p6P ∈ RP :

P∑
p=1

hp = 1,

(∀p ∈ {1, . . . , P}) hmin,p 6 hp 6 hmax,p

}
. (6)

2.3. Regularization strategy for the video sequence

We consider a composite penalization function on the se-
quence x, whose first term introduces an a priori knowledge
on each image independently, while the second term penal-
izes the whole sequence, i.e.

Ψ(x) =

T∑
t=1

Ψt(xt) + M(x). (7)

For all t ∈ {1, . . . , T}, Ψt is defined as

(∀xt ∈ RN ) Ψt(xt) = η tv(xt) + ι[xmin,xmax]N (xt), (8)

where η is a positive regularization constant, and tv denotes
the total variation function from [16]. Furthermore, in order

to favor the similarity between the successive video frames
while taking into account existing motions, we define

M(x) =
1

2

T∑
t=1

∑
`∈Vt

β`,t‖xt −M`→tx`‖2, (9)

where (β`,t)`,t are positive weights, the index set Vt defines
the neighborhood of t (i.e. a set of indices ` ∈ Vt for which
|` − t| is small), and M`→t ∈ RN×N is the linear operator
modeling the motion compensation process between the ref-
erence frame t and a neighboring frame ` [17].

3. PROPOSED ALGORITHM

3.1. Optimization tools

Let us first recall the notion of proximity operator relative to
a metric.

Definition 1 Let f : RN → (−∞,+∞] be a convex, proper,
lower semicontinuous function, let U ∈ RN×N be a sym-
metric positive definite matrix. For every x ∈ RN , the varia-
tional problem

minimize
z∈RN

f(z) +
1

2
‖x− z‖2U , (10)

admits a unique solution, which is denoted by proxU ,f (x).
The so-defined operator proxU ,f : RN → RN is the proxim-
ity operator of f relative to the metric induced by U .

Hereabove, ‖ · ‖U denotes the weighted norm defined by
‖.‖U = 〈·,U ·〉, where 〈·, ·〉 is the usual Euclidean scalar
product. Note that, if U is the identity matrix, one recov-
ers the usual proximity operator proxf : RN → RN , which
is at the core of numerous convex optimization algorithms
(see [18, 19] for a tutorial).

We also recall the following characterization of smooth
functions:

Definition 2 Let f : RN → R be a differentiable function.
Its gradient∇f is said L-Lipschitzian continuous if, for every
(x, z) ∈ (RN )2,

‖∇f(x)−∇f(z)‖ 6 L‖x− z‖. (11)

3.2. Hybrid proximal alternating strategy

Although the objective function G is nonconvex because of
the coupling in the data fidelity term (3), it remains yet con-
vex with respect to each variable x1, . . . ,xT and h, as the
regularization terms are convex. A standard approach for
solving (2) is thus to adopt an alternating minimization strat-
egy, where, at each iteration, G is minimized with respect to
one variable while the others remain fixed. This approach,
sometimes referred to as Block Coordinate Descent [20] or



nonlinear Gauss-Seidel method [21], has been widely used in
the context of blind deconvolution [7, 10, 13–15]. However,
its convergence is only guaranteed under restrictive assump-
tions [20]. Therefore, alternative strategies based on prox-
imal tools have been proposed in [9, 21–26]. They consist
of replacing, at each iteration, the minimization step by ei-
ther a (single) proximal step [21, 24] or a Forward-Backward
step [22, 23, 25, 26], giving rise, respectively, to the so-called
proximal (resp. forward-backward) alternating algorithms. In
this work, we propose to adopt the following hybrid alternat-
ing algorithm:

Algorithm 1 Video blind deconvolution algorithm
For every k ∈ N, (λ1

t , . . . , λ
k
T , µ

k) ∈ (0,+∞)T+1.
Initialize with x0

1, . . . ,x
0
T ∈ RN , and h0 ∈ RP .

Iterations:
For k = 0, 1, . . .

For t = 1, . . . , T x̌t,k =
(
xk+1

1 , . . . ,xk+1
t−1 ,x

k
t , . . . ,x

k
T

)
,

x̃kt = xkt − λkt
(
∇xt

Φ(x̌t,k,hk) +∇xt
M(x̌t,k)

)
,

xk+1
t = proxλk

t Ψt

(
x̃kt
)
,

hk+1 = proxµk(Θ+Φ(xk+1,·))(h
k).

In the above algorithm, for every k ∈ N, for every t ∈
{1, . . . , T}, ∇xtΦ(x̌t,k,hk) is the partial gradient of Φ with
respect to xt computed at (x̌t,k,hk). The vector∇xtM(x̌t,k)
is defined in a similar way.

3.3. Convergence analysis

The convergence of Algorithm 1 requires the design of a
proper strategy to determine the stepsize parameters

(
λkt
)

16t6T

and µk at each iteration k ∈ N. First, let us state two prop-
erties, which are related to the quadratic form of functions Φ
and M.

Proposition 1 Let µ ∈ (0,+∞) and x ∈ RTN . Let us define
the symmetric definite positive matrix

A(x) =

T∑
t=1

X>t Xt + µ−1IP , (12)

where IP is the identity matrix of RP , and, for every t ∈
{1, . . . , T}, Xt ∈ RN×P is such that S(h)xt = Xth. Then,
for every h ∈ RP ,

proxµ(Θ+Φ(x,·)) (h) =

proxA(x),Θ(h−A(x)−1∇hΦ(x,h)), (13)

and, for every x′ ∈ RTN and h′ ∈ RP ,

Φ(x,h′) +∇h′Φ(x′,h′)>(h− h′)

+
1

2
‖h− h′‖2A(x) > Φ(x,h). (14)

Proposition 2 Let t ∈ {1, . . . , T} and h ∈ RP . The partial
gradient function xt 7→ ∇xt

Φ(x,h) is Lipschitzian continu-
ous, with Lipschitz modulus

Lt(h) = ‖S(h)‖2 +
∑
`∈Vt

(
β`,t + βt,`‖Mt→`‖2

)
. (15)

Combining Propositions 1, 2 and the convergence proper-
ties of the BC-VMFB (Block Coordinate Variable Metric For-
ward Backward) algorithm derived in [26], the convergence
of Algorithm 1 can be proved as expressed by the following
result:

Theorem 1 Let (xk,hk)k∈N be a sequence generated by Al-
gorithm 1, where, for all k ∈ N, λkt = θLt(h

k)−1 with
θ ∈ (0, 2) and Lt(·) defined in (15). Then the sequence
(xk,hk)k∈N converges to a critical point (x̂, ĥ) of G. More-
over, (G(xk,hk))k∈N is a nonincreasing sequence converg-
ing to G(x̂, ĥ).

3.4. Practical implementation

The proximal steps in Algorithm 1 are not explicit, and subit-
erations are needed. In practice, the proximity operator of Θ+
Φ(x, ·) is computed with Dykstra algorithm [18], while the
Dual Forward-Backward algorithm [27] is used to compute
the proximity operators of functions Ψt, for t ∈ {1, . . . , T}.
The proposed algorithm is thus used under an inexact form
for which the conclusions of Theorem 1 still hold.

4. EXPERIMENTAL RESULTS

4.1. Synthetic data

We first demonstrate the practical performance of our method
on a synthetic video restoration example. We extract T = 15
frames of sizeN = 256×256 from the video sequence Claire,
available at http://www.cipr.rpi.edu/resource/
sequences/cif.html. To generate the observed video
y = (yt)16t6T , we degraded the original one with the hor-
izontal convolution kernel displayed in Figure 2, with size
P = 41, which corresponds to a realistic model of those af-
fecting old analog television sequences. The video is further
corrupted with a white additive zero-mean Gaussian noise.
Parameters ρ, η and (β`,t)`,t were adjusted to maximize
the SNR between the original and reconstructed sequences.
Neighboring frames such that |`−t| = 1 have been taken into
account in the regularization term M. The motion matrices
(M`→t)`,t have been estimated from the degraded sequence
y, using the optical flow estimation algorithm from [17].
Subpixel motions have been ignored, so as to obtain simple
expressions for

(
M>

`→t
)
`,t

and
(
‖M`→t‖2

)
`,t

. Algorithm 1

provides estimates (x̂, ĥ) displayed in Figures 1-2, with SNR
= 32.2 dB, and relative quadratic error on the kernel equal
to 0.006. To emphasize the efficiency of the motion-based



regularization strategy, note that, when taking β`,t ≡ 0, we
observe a decrease of the estimation quality, as the SNR of
the restored sequence is equal to 31.2 dB and the kernel
estimation error to 0.016.

Fig. 1. 3rd and 12th frames of the Claire sequence: Noisy convolved
images, SNR = 25.6 dB (top) and restored images (bottom) with the
proposed algorithm, SNR = 32.2 dB.

Fig. 2. Original kernel (black) and estimated kernel (red), with rela-
tive error 0.006.

4.2. Real data

We now apply our method to a real video sequence (for which
no ground truth is available) containing T = 5 frames of
N = 720 × 576 pixels, extracted from a French broadcast
archive programme “Au théâtre ce soir”. This sequence, pro-
vided by INA, results from a recording taken from a radio
frequency analog terrestrial link, affected by multiple paths.
Algorithm 1 is employed to restore the luminance component
of the YCrCb representation of the sequence, the two chromi-
nance components remaining untouched. To account for the
interlacing, the odd and even lines of the video are restored
separately, and then gathered at the end of the restoration pro-
cess. Examples of degraded and restored images, as well as

Fig. 3. 2nd frame of the real INA sequence: Degraded image (top)
and restored image (bottom) with the proposed algorithm.

Fig. 4. Zoom on a part of the above images.

Fig. 5. Estimated kernel



the estimated kernel, are displayed in Figures 3-5. One can
observe on Figure 4 the ability of the proposed method to
highly improve the sharpness of the image. Moreover, the
knowledge of an estimation of the convolution kernel allows
us to better analyze the main source of the video degrada-
tion process, here mainly due to oscillation effects probably
caused by the analog transmission.

5. CONCLUSION

In this work, we have presented a new variational method for
blind deconvolution of video sequences. Our approach re-
lies on the minimization, through a proximal alternating algo-
rithm, of a penalized criterion that accounts for the temporal
continuity between the video frames. Our experimental re-
sults on both synthetic and real data showed that our method
leads to well restored images, as well as satisfactory estima-
tions of the blur kernel. It should be emphasized that the ver-
satility of the proposed algorithm makes it possible to handle
various forms of blur kernels, and to minimize convex and
nonconvex data fidelity and penalty functions. Moreover, us-
ing variants of this algorithm could open the gate to faster
implementation strategies based on parallel computing archi-
tectures.
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[8] E. Thiébaut, “Optimization issues in blind deconvolution algorithms,”
in Proc. of SPIE 4847, Astronomical Data Analysis II, Waikoloa,
Hawaii, 27-28 Aug. 2002, pp. 174–183.

[9] J. Bolte, P.L. Combettes, and J.-C. Pesquet, “Alternating proximal
algorithm for blind image recovery,” in 17th IEEE Int. Conf. on Image
Processing (ICIP 2010), Hong-Kong, 26-29 Sept. 2010, pp. 26–29.

[10] N. Komodakis and N. Paragios, “MRF-based blind image deconvo-
lution,” in 11th Asian Conference on Computer Vision (ACCV 2013),
Daejeon, Korea, 5-9 Nov. 2013, pp. 361–374.

[11] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding
and evaluating blind deconvolution algorithms,” in 14th IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR 2009), Miami,
Florida, USA, 20-25 Jun. 2009, pp. 1964–1971.

[12] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a
normalized sparsity measure,” in 16th IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR 2011), Colorado Springs, USA, 20-25
Jun. 2011, pp. 233 – 240.
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