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ABSTRACT
A pseudo coherence estimate using multitapers is presented.
The estimate has better localization for sinusoids and is shown
to have lower variance for disturbances compared to the usual
coherence estimator. This makes it superior in terms of find-
ing coherent frequencies between two sinusoidal signals; even
when observed in low SNR. Different sets of multitapers are
investigated and the weights of the final coherence estimate
are adjusted for a low-biased estimate of a single sinusoid.
The proposed method is more computationally efficient than
data dependent methods, and does still give comparable re-
sults.

Index Terms— coherence, cross-spectrum, multitaper,
sinusoids

1. INTRODUCTION

The coherence spectrum (CS) is a well established measure
of the relation between two signals as a function of frequency.
Assuming the cross-spectrum between the two stationary sig-
nals x(t) and y(t) is denoted SXY (f) and the auto-spectra
are denoted SX(f) and SY (f), the CS is defined as

CXY (f) =
|SXY (f)|2

SX(f)SY (f)
. (1)

There are multiple ways to estimate the CS where Welch’s
method was among the first and has been quite common since,
[1–3], but the more advanced method of multitapering have
also been used, [4–8]. Recently there has also been a surge
of data dependent matched filter bank methods for estimation
of sinusoids in heavy disturbance, e.g. [9, 10]. The Welch’s
method and multitaper methods suffer from high variance and
spectral leakage whereas the data dependent filter bank meth-
ods have been shown to be more accurate when estimating
sparse CS but are computationally heavy.

The concept of multitapers was invented by Thomson, [4],
where the main idea is to reduce the variance of the spec-
tral estimate by averaging several uncorrelated periodograms.
The same data sequence is used for all periodograms but the
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shape of the window changes in a way to give uncorrelated
periodograms and thereby reduced variance. Other suggested
multitaper methods are more suitable for non-smooth spectra
and peaked spectra such as the sinusoidal tapers and the Peak
Matched MultiTapers (PMMT) [5, 6].

We suggest an altered version of the computationally ef-
ficient multitaper method with lower variance and better con-
centration that is also comparable with the data dependent
filter bank methods when estimating the CS for signal mea-
surements with a low SNR. In this paper we show that the
method is useful when investigating common frequencies be-
tween signals, rendering high accuracy and low variance.

2. MULTITAPER PSEUDO COHERENCE

Assume that we have two signals expressed in their tapered
spectral representation

(

Xk(f) =
P

n x(n)hk(n)e�i2⇡fn
,

Yk(f) =
P

n y(n)hk(n)e�i2⇡fn
.

Estimating the spectra based on the entire observed signals
using K different tapers, a variance reduction is achieved for
a set containing K orthonormal tapers, i.e.,

hkh
T
j =

(

1 if k = j,

0 if k 6= j,

,

where hk = [hk(0) . . . hk(N � 1)] and (·)T is the transpose
operator. The multitaper spectral estimate for the process
x(n), ŜX(f), is formed as

ŜX(f) =
K
X

k=1

↵kXk(f)Xk(f)
H
, (2)

where (·)H denotes the Hermitian conjugate and ↵k are the
weighting factors. For energy conservation, it must hold that

K
X

k=1

↵k = 1, (3)

and by limiting the weights such that ↵k � 0 8k, one ensures
the desired positivity of the spectral estimate. The classic way
to estimate the multitaper coherence spectrum (MT-CS) using
K number of tapers is written as
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. (4)

We propose a slight change to this expression where the ab-
solute value over the cross-spectrum is simply moved inside
the sum.
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(5)
We denote this method Multitaper Pseudo Coherence Spec-
trum (MT-PCS), which is a biased estimator that essentially
treats the two signals as statistically independent. For strong
dependencies between two signals, such as common sinusoids
oscillating with the same frequency, the MT-PCS will retain
large coherence, similar as for the usual coherence. The ad-
vantage of the MT-PCS estimate is that it will give a lower
coherence level than the MT-CS, and additionally lower vari-
ance (shown below), for independent as well as dependent
noise disturbances.

There are different sets of tapers to choose from when es-
timating spectra where the set of Thomson multitapers, which
are optimized for white noise, is the most common one [4].
However, as we here want to identify peaks in the spectrum
we will turn to the sinusoidal tapers and the Peak Matched
multitapers (PMMT) [5, 6] as these have better performance
for varying spectra. The choice of weights and number of ta-
pers used, K, must also be addressed. The standard method is
to choose tapers such that a certain band-width is covered and
then using equally distributed weights, i.e. ↵k = 1/K k =
1, ...,K. Another way is to do some optimization, typically
minimizing mean squared error (MSE) or a weighted version
of the MSE [6].

3. PROPERTY ANALYSIS

Below some properties of the MT-PCS estimator is derived.
It is assumed the noise in the two signals are statistically in-
dependent.

3.1. Expected Value

As the auto-spectra are calculated in the same way in both es-
timates, i.e. the denominators in equations (4) and (5), only
the properties of the cross-spectrum estimate will be investi-
gated here. Below, the following notations will therefore be
used:
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Fig. 1. Expected value and variance estimated from simula-
tions compared with the approximated theoretical values.

As mentioned, this new estimator introduces some bias. How-
ever, how biased is determined by the choice of multitapers.
This can be seen by expanding the expression for the cross-
spectrum of the old method, MT-CS:
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where we have released the notation including the frequency
parameter. Note that the first sum of equation (8) can then be
identified as ŜMT�PCS

XY (f). Assuming that the two observed
processes are statistically independent we then have that

E
n

Ŝ

MT�CS
XY

o

= E
n

Ŝ

MT�PCS
XY

o

+
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Y

H
j Yk

o

, (9)

where E {·} denotes the expected value. It has been previ-
ously shown that for a Gaussian process, x = [x(0) . . . x(N�
1)]T , it holds that

E
n

Xj(f)Xk(f)
H
o

= hj�(f)Rx�(f)Hh

T
k , (10)

where �(f) = diag(1 e�i2⇡f · · · e�i2⇡(N�1)f ) and Rx =
E[xxT ] is the covariance matrix [6, 11]. From this one can
draw the conclusion that, if one chooses tapers that are as
close to orthogonal with respect to the covariance matrices
Rx and Ry as possible, the last term will be small.

3.2. Variance

The two main advantages with our proposed MT-PCS esti-
mate compared to MT-CS is the lowered variance and the bet-
ter localization. Again, by only considering the numerator in
the CS estimates, and remembering equation (8), one can see
that the MT-CS estimate equals the MT-PCS estimate plus an
extra term. It will therefore hold that
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Fig. 2. Resulting weights for the three sets of tapers.
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as, even though the extra terms may have expected value close
to zero, they will still add variance. Below V {·} denotes vari-
ance and C {·, ·} denotes covariance. For completeness we
will derive an analytic expression of the variance of the cross-
spectrum estimate for two independent Gaussian signals. The
variance then is

V
n

Ŝ
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The covariance for each (j, k) combination is
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As the processes X(f) and Y (f) are assumed to be indepen-
dent, the expected value of all mixed combinations of X and
Y equals zero. Below we make use of Isserlis’ theorem, [12],
which states that if X1, X2, X3, X4 are circularly symmetric
zero-mean Gaussian random variables it holds that

E {X1X2X3X4}
= E {X1X2}E {X3X4}+ E {X1X3}E {X2X4}

+E {X1X4}E {X2X3} . (14)

Using this, the two parts of the covariance can be calculated
as
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Fig. 3. Log power spectrum of the AR noise added to ana-
lyzed signal.

Frequency [Hz] SNR
0.108 -19.24
0.15 -10.19
0.2 -3.04

0.205 -2.46

Table 1. Oscillating frequencies in the simulated example
with their respective local SNR.

and the second term as
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By plugging in the results from equations (13,15,16) and
(10) into equation (12) we have an analytic expression for the
variance of the cross-spectrum estimate. In [6] it is then also
proven that the variance of the auto-spectrum for the process
x(n) is
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An approximation of the variance of the MT-PCS estimate
can then be made for the full MT-PCS estimate using Taylor
expansion for moments of functions of random variables.

4. SIMULATIONS AND NUMERICAL RESULTS

4.1. Expected Value and Variance

Simulations were first made containing pure noise to show
that the calculations in section 3 are correct. We made 1000
monte-carlo simulations of the AR noise with spectral density
seen in figure 3 and estimated the mean and the variance of
the MT-PCS estimate. The result is plotted together with their
respective theoretical values in figure 1. Note that the theoret-
ical values are Taylor expansion approximations and the two
curves do therefore not match completely.
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(4b) MT-PCS (sinusoidal)
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(4c) MT-PCS (Welch)
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Fig. 4. The mean estimate and the mean ± one standard deviation (dashed line) and the true frequencies (thin solid stems).

4.2. Tapers and Weights

As we are mainly interested in finding peaks in the CS, we
adapt the weights to find a single frequency peak as well as
possible. The assumption made then is that if the weights are
suitable for estimation of a single peak, they are also suitable
for multiple peaks. The main problem with parameter tuning
in CS is that the weights occur both in the numerator and the
denominator making the problem non-convex. Hence we find
suitable parameters by a greedy grid search. A grid is set up
for all possible ↵k such that equation (3) and ↵k � 0 hold.
The bias is then measured when estimating the CS for two
signals, each 500 samples long, containing the same single
frequency without additive noise. The weights with the lowest
bias is chosen for further analysis and are shown in figure 2.

Note that the plots show the weights for seven tapers and the
last weight is close to zero in all three cases, meaning more
tapers than six will not significantly change the estimate.

4.3. Coherence estimation

Simulations are made with with two signals containing si-
nusoidals in uncorrelated colored noise to show the advanta-
geous properties of the MT-PCS. As we are considering col-
ored noise we define the local SNR as

SNR(f) = 10log10

✓

Psignal(f)

Pnoise(f)

◆

. (18)

We will first compare the results from different sets of
tapers, i.e. the sinusoidal, the PMMT, using the weights in
figure 2 and 6 tapers. Also the Thomson multitapers were



evaluated, but they rendered no satisfactory results and are not
presented here. The results are also compared to the Welch’s
method (equal weights) using 6 tapers. As test signals two
real-valued signals oscillating at four frequencies, with inde-
pendent additive colored noise with spectral distribution seen
in figure 3, was used. The oscillating frequencies and their re-
spective local SNR can then be seen in table 1. We simulated
100 realizations of the test signal with 500 samples in each
realization. The CS was then estimated using the different
methods and we present the mean estimate ± one standard
deviation. The results can be seen in figures 4a,4b and 4c.
The PMMT and the sinusoidal tapers perform the best of the
three, PMMT renders lower variance but also higher bias than
the sinusoidal tapers. The Welch’s method does not render
any satisfactory results; this due to the high level of noise.

We then compare the proposed MT-PCS estimator, using
PMMT, to some of the previously proposed methods: The
MT-CS, also using PMMT, the Capon estimator and the IAA
with the recommended filter length N/4, [9, 10]. The mean
estimated CS ± one standard deviation for the different meth-
ods can be seen in figures 4d,4e and 4f. Note that the variance
of the MT-PCS, seen in figure 4b, is lowered compared to the
MT-CS, figure 4d, and the localization is also better as the
peaks at 0.2 and 0.205 Hz are identified separately but also
the thickness of the peak at 0.15 Hz is reduced. The data de-
pendent filter bank methods, figures 4e and 4f, identifies the
three higher frequencies exemplary but the frequency peak at
0.108 Hz, where the SNR is very low, is at average identi-
fied at a level close to the standard deviation meaning it will
be hard to detect from one single realization; something MT-
PCS handles better where the lowest peak is roughly 1.5 times
the standard deviation.

It is also worthy to mention that the 100 simulations
took 0.10 seconds to process for both MT-CS and MT-PCS
whereas Capon took 2.98 seconds and IAA 5.30 seconds.
The multitaper methods are then implemented using the fast
Fourier transform and the data dependent filter bank methods
are implemented using the computationally efficient methods
presented in [9, 10].

5. CONCLUSIONS AND FUTURE WORK

We propose a multitaper Pseudo Coherence method (MT-
PCS) for estimation of common frequencies between signals.
The method proves to have lower variance and better local-
ization than other Fourier transform based estimators. Further
it is robust to high levels of noise and very computationally
efficient in comparison to filter bank methods.

To improve the MT-PCS method even more, a better opti-
mization method is needed for tuning the weighting factors as
well as investigation of signal and noise optimal multitapers.
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