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ABSTRACT

Enhancement of a desired speech signal in the presence of back-
ground noise and interferers is required in various modern communi-
cation systems. Existing multichannel techniques often require that
the number of sources and their locations are known in advance,
which makes them inapplicable in many practical situations. We pro-
pose a framework which uses the microphones of distributed arrays
to enhance a desired speech signal by reducing background noise
and an initially unknown number of interferers. The desired signal
is extracted by a minimum variance distortionless response filter in
dynamic scenarios where the number of active interferers is time-
varying. An efficient, geometry-based approach that estimates the
number of active interferers and their locations online is proposed.
The overall performance is compared to the one of a geometry-based
probabilistic framework for source extraction, recently proposed by
the authors.

Index Terms— Source extraction, PSD matrix estimation, dis-
tributed arrays, number of sources

1. INTRODUCTION

Modern communication systems involve hands-free acquisition of
desired speech in a variety of applications, such as smart homes,
hands-free telephony, etc. The signals captured by the available mi-
crophones are often corrupted by background noise and interfering
speech. If the second order statistics (SOS) of the desired and un-
desired signals are known, the desired signal can be estimated by
applying linear spatial filters to the microphone signals. The SOS
of a particular signal can be estimated from the microphone signals
by temporal averaging, during periods where the particular signal is
dominant. Recently, spatial cues have been used to detect the dom-
inant signal in each time-frequency (TF) bin and estimate the corre-
sponding SOS [1–3]. If multiple speech interferers are present, the
SOS of each interfering signal needs to be estimated.

The detection of the number of speech sources in reverberant
environments has been recently adressed in [3–7], where spatial in-
formation for each TF-bin extracted using microphone arrays is em-
ployed. On the one hand, the authors in [3–5] use probabilistic
mixture models, where the number of sources represents a model
parameter to be estimated. These algorithms are used in a batch
mode [4, 5], for instance, prior to a blind source separation algo-
rithm, or require a training phase to estimate the model parame-
ters [3]. Hence, they are not suited for real-time applications with
varying number of sources. On the other hand, the authors in [6, 7]
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use histograms of bin-wise direction of arrival (DOA) estimates to
count and localize the active sources. While the algorithm in [6]
is based on histograms of the complete observation, the algorithm
in [7] is based on short-time histograms, and hence suited for a real-
time tracking of the number of speech sources.

In this work, we propose a non-probabilistic approach for local-
ization and number of source estimation, applied to extract a desired
signal in the presence of varying number of interferers. Similarly
to [7], our proposed approach estimates the number of sources on-
line, at each time frame. Based on bin-wise positions obtained by
triangulating the DOA estimates of multiple distributed arrays, the
number of sources is monitored, new sources are detected, or inac-
tive sources are discarded. Given the number and the location of
the speech sources and the bin-wise position estimates, the corre-
sponding SOS are estimated from the microphone signals by tempo-
ral averaging. Finally, a minimum variance distortionless response
(MVDR) is employed that promptly adapts to emerging and disap-
pearing interferers, while maintaining low distortion of the desired
speech signal. The framework could potentially be used for source
separation, where each source is extracted by a filter that reduces the
remaining sources and the background noise.

The paper is organized as follows: in Section 2 we present the
signal model. The source extraction problem consists of (i) detect-
ing the number of active sources online, as described in Section 3,
and (ii) estimating the SOS of the active sources based on bin-wise
position estimates, as described in Section 4. Evaluation results are
presented in Section 5 and Section 6 concludes the paper.

2. PROBLEM FORMULATION

Consider a scenario whereM microphones from S distributed arrays
capture a desired speech signal, unknown and possibly time-varying
number of interfering signals that are coherent across the arrays, and
a background noise signal. The short-time spectral coefficients of
the microphone signals are given by an M × 1 vector

y(n, k) =
∑
i∈Qn

xi(n, k) + v(n, k), (1)

where the setQn, contains the labels of all active sources, the vectors
xi and v are the speech and the noise signals, respectively, and n and
k are the time and frequency indices. Let d denote the label of the
desired source signal xd, and let the setQi

n = Qn \ {d} denote the
labels of all interfereing signals. The different signals in (1) are con-
sidered to be realizations of zero-mean, mutually uncorrelated ran-
dom processes. The power spectral density (PSD) matrix of the mi-
crophone signals is denoted by Φy(n, k) = E

[
y(n, k)yH(n, k)

]
,

where E [·] is the expectation operator. The PSD matrices of xd, xi,



and v are defined similarly. As the signal components are uncorre-
lated, it follows that

Φy(n, k) = Φxd(n, k) +
∑
i∈Qi

n

Φxi(n, k) + Φv(n, k). (2)

The goal is to estimate the desired signal captured at the m-th
microphone, by a linear combination of the microphone signals, i.e.,

X̂d,m(n, k) = wH
d,m(n, k)y(n, k). (3)

If the PSD matrices of xd, xi, and v are known, an MVDR filter that
minimizes the undesired signal power while preserving the desired
signal can be computed as follows [8]

wd,m = (gHd,mΦ−1
u gd,m)−1 Φ−1

u gd,m , (4)

where the time and frequency indices were omitted for brevity. The
relative transfer function gd,m between the desired source and the
m-th microphone is obtained as them-th column of Φxd normalized
by the desired signal PSD at the m-th microphone, and Φu is the
PSD matrix of all undesired signals, i.e.,

Φu(n, k) =
∑
i∈Qi

n

Φxi(n, k) + Φv(n, k). (5)

Note that if an estimate of Φxd is available, the matrix Φu is
given by Φy − Φxd . While this estimate can be useful in appli-
cations such as signal detection, the sensitivity to estimation errors
leads to unpleasant artifacts and inconsistent quality in spatial filter-
ing applications. Therefore, we aim at estimating the PSD matrix
of each interferer and the background noise separately, and compute
Φu using (5). Estimating the number of interferers and their PSD
matrices Φxi , for i ∈Qi

n, using spatial cues extracted by distributed
arrays is the main contribution of this paper. A block diagram of the
proposed framework is illustrated in Figure 1.

3. NUMBER OF SOURCE ESTIMATION

The total number of active sources is estimated each time frame us-
ing bin-wise position estimates from the L most recent frames and
is denoted by |Qn|. Given the position estimates, a time-varying
convex quadrilateral in the form of a kite is assigned to each active
source, where the kite vertices are completely determined by the set
of position estimates. The number of sources at each frame is then
obtained by counting the number of kites.

3.1. Bin-wise position estimation

Given bin-wise DOA estimates from two distributed arrays, a po-
sition can be estimated by triangulation. The DOAs can be for in-
stance computed using the estimator which was used in the number
of source estimation algorithm in [6]. Let n̂s = [cos(θ̂s), sin(θ̂s)]

denote the unit vector pointing towards the DOA θ̂s estimated at
array s. While we consider only the azimuthal angle, it is straight-
forward to extend the algorithm to consider also the elevation angle.
For each TF bin, the DOAs of two arrays i and j are used to obtain
the position estimate r̂ by triangulation, which are chosen based on a
simple criterion, described as follows: (i) given the DOA vectors for
all arrays n̂1, . . . , n̂S , the inner product between each pair of vec-
tors is computed; (ii) the arrays corresponding to the vector pair with
angle closest to 90 degrees are used for triangulation. The criterion
can be formally expressed as follows

(i, j) = arg min
i′,j′

|n̂T
i′ n̂j′ |, i′ 6= j′. (6)
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Fig. 1: Block diagram of the proposed source extraction framework,
where psp denotes the speech presence probability.

The reasoning behind this criterion is that for angles which are closer
to 90 degrees, the triangulation is less sensitive to DOA errors. As
the angle between the DOA vectors becomes small, a small DOA
error results in a large position error, and as the angle approaches 180
degrees such that the DOA vectors are almost parallel, triangulation
might fail.

3.2. TF bin selection and source kite computation

For robust number of source estimation, a subset of reliable TF bins
needs to be selected where the bin-wise position estimates accurately
represent the locations of the sources. For instance, in [6, 7], the TF
bins where only one source is dominant were selected, requiring an
algorithm to detect single-source bins. We propose to select reliable
TF bins using a speech presence probability (SPP) and the DOA es-
timates of all arrays. The set of position estimates corresponding to
the reliable TF bins at a time frame n is denoted by R(n). Given a
position estimate r̂, and the array positions p1, . . . ,pS , we denote
by θr,s the angles between the vectors r̂ − ps for s = 1, . . . , S
and the horizontal axis. Moreover, for each array s, a histogram of
all DOA estimates at frame n is computed, and the maximum of
the histogram is denoted by θ̃s. We used a histogram resolution of
10◦. A position r̂(n, k) is considered reliable, and hence belongs to
R(n) if psp(n, k) > pthr and the angles θr,s for each array s sat-
isfy |θr,s(n, k)− θ̃s| ≤ ∆θ . The SPP threshold pthr ensures speech
presence and ∆θ is chosen small enough such that, with a high prob-
ability, the position estimates inR(n) correspond to a single source.
Hence, the set R(n) is associated to the source that corresponds to
the peak in the DOA histograms of all arrays at frame n. This check
is performed for all arrays in order to minimize the size of the clus-
ters that are formed by the reliable position estimates for each source,
leading to more robust number of source estimation.

Let the set RL(n) contain all reliable position estimates from
the past L frames, i.e.,

RL(n) = R(n) ∪R(n− 1) ∪ . . . ∪ R(n− L+ 1). (7)

A kite Ki(n) for source i is defined using a set S⊆RL(n) of posi-
tion estimates related to that source, where the assignment of posi-
tion estimates to sources is described in Section 3.3. Given the set
S, the kite vertices are computed as follows (see Figure 2):
(i) The vertex p1 is the position of the array s with the smallest
Euclidean distance to the mean of S.
(ii) Determine the maximum θ̂s,max and minimum θ̂s,min among
the DOAs related to the position estimates in S.
(iii) Determine the position estimate in S with the largest Euclidean
distance dmax from array s.
(iv) We introduce three parameters related to the kites: angular mar-
gin θmar, distance margin dmar, and maximum angle θres. The mar-
gins θmar and dmar allow for deviations of the position estimates of
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Fig. 2: Illustration of the kite computation

Algorithm 1 Inputs:Qn−1, Ki,n−1, ∀i ∈ Qn−1, t(n-1), R(n), RL(n)

IF Qn−1 6= ∅ (there are sources present)

1. Qn =Qn−1, Ki,n = Ki,n−1, for i ∈ Qn (propagate sources)
2. t(n) = t(n− 1) + 1|Qn|×1

3. Compute the sets Πi = Ki,n ∩R(n) for i ∈ Qn
IF |Πi′ | > 0, where i′ = arg maxi(|Πi|)

4. Set the i′-th entry of t(n) to zero
5. Si′ = [RL(n) ∩Ki′,n] \

[
RL(n) ∩ [∪i6=i′ Ki,n]

]
6. The vertices of Ki′,n are recomputed using S (see Section 3.2)

ELSE (adding a new source)

7. Create an auxiliary kite Kaux using the points inR(n)

8. Saux = RL(n) ∩Kaux

IF |S| > ηdet (minimum number of points to detect a source)

9. Add a kite Kinew,n using Saux, as described in Section 3.2
10. Add a source: add inew toQn, add a token t(n) = [ t(n), 0 ]

END
END

ELSE (no sources present)
11. Execute lines 7-10.

END
13. Count the number l of entries in t(n) that exceed tmax

14. Remove the l sources fromQn and their respective kites

Outputs: Qn, Ki,n for i ∈ Qn, t(n)

a source, hence accounting for estimation errors. The maximum an-
gle θres limits the size of the kites.
(v) We define θa = (θ̂s,min+θ̂s,max)/2, θb = min(θ̂s,max +θmar, θa +

θres), and θc = max(θ̂s,min − θmar, θa − θres). The remaining three
vertices are then given as follows

p2 = p1 + (dmax + dmar) · [cos(θa), sin(θa)] (8a)
p3 = p1 + (dmax + dmar) · [cos(θb), sin(θb)] (8b)
p4 = p1 + (dmax + dmar) · [cos(θc), sin(θc)]. (8c)

3.3. Counting the number of kites

At each time frame, the sets R(n), RL(n), the set of source labels
from the previous frame Qn−1, and the existing source kites are in-
puts to the source counting algorithm, given by Algorithm 1. The
first step is to find the kite Ki′ which contains the maximum num-
ber of points from R(n). If the maximum is nonzero, the kite is
updated using the set Si′ that consists of all points in RL(n) which
are in Ki′ , but not in any other kite (line 5). If the set R(n) has
no intersection with the existing kites, or if there are no existing

kites so far (lines 7-11), an auxiliary kite Kaux is formed using
Saux = R(n). A new source is added if a sufficient number of
points ηdet from RL(n) belong to Kaux. The value of ηdet should
be chosen such that new sources are promptly detected, while mini-
mizing false alarms.

To track the number of active sources, we use a so-called token
for each source. The tokens for all active sources are stored in a vec-
tor t(n). Once a new source is detected, it is assigned a token with
value 0 (line 10). Once R(n) is associated with an existing source,
the token of that source is reset to 0 (line 4), while the tokens of all
other sources are incremented by one (line 2). When the token of
a source reaches tmax, the source is declared inactive, its kite is re-
moved and the source label is deleted from Qn (lines 13-14). The
parameter tmax should provide a good trade-off between (i) prompt
inactivity detection, so that the spatial filter aims at reducing only
the actually active interferers, and (ii) accounting for short speech
pauses without removing a particular interferer. In our implementa-
tion we used tmax = 90 (corresponding to approximately 3 seconds).

4. POSITION-BASED PSD MATRIX ESTIMATION

To compute a spatial filter that extracts one of the sources in Qn,
while reducing the remaining sources, the PSD matrix of each source
is required. Recently proposed approaches for estimating PSD ma-
trices of speech sources from a mixture are based on recursive tem-
poral averaging. The computation of the the averaging parameter is
a crucial factor for the estimation accuracy. Different probabilistic
methods have been recently proposed [1–3], where given a probabil-
ity pxi(n, k) that the i-th source is dominant at TF bin (n, k), the
averaging parameter is computed as

αxi(n, k) = 1− pxi(n, k)(1− α̃), α̃ ∈ [0, 1), (9)

and the PSD matrix is estimated according to

Φxi(n) = αxi(n)Φxi(n− 1) + [1− αxi(n)] y(n)yH(n). (10)

The frequency index in (10) was omitted for brevity. To compute an
averaging parameter αv(n, k) for noise PSD matrix estimation SPP
can be used, as done in [9]. In this work, we propose a position-
based non-probabilistic indicator function Ixi(n, k) to compute the
averaging parameter αxi(n, k), for each source i as follows

αxi(n, k) = 1− Ixi(n, k)(1− α̃) α̃ ∈ [0, 1). (11)

In this way, αxi= α̃ when Ixi= 1 such that Φxi is recursively up-
dated, and αxi= 1 when Ixi= 0, such that Φxi takes the value from
the previous frame.

As described in Section 3, each source i ∈ Qn is associated
with a kite Ki,n. We can estimate the location of the i-th source at
frame n as the meanµi of the position estimates in Si, where Si was
defined in line 5 of Algorithm 1. Given a position estimate r̂(n, k),
and an SPP psp(n, k), the indicator functions at TF bin (n, k) are
computed as follows

Ixi =

{
1, if ‖r̂ − µi‖ < ‖r̂ − µj‖ ∀j 6= i, and psp > pthr

0, otherwise,
(12)

where the SPP was computed as in [9], and pthr is a threshold to
ensure speech presence. In this manner, at a TF bin (n, k) only the
PSD matrix of the source whose estimated location µi has the short-
est Euclidean distance to the bin-wise position r̂(n, k) is updated.
Note that the indicator function is computed separately at each fre-
quency k, meaning that PSD matrices of different sources can be
estimated during periods when multiple sources are active as well.
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Fig. 3: Scenarios considered for the evaluation.

αxi pthr ∆θ ηdet tmax dmar θmar θres L

0.8 0.9 15◦ 20 90 25 cm 10◦ 20◦ 90

Table 1: Parameters used in the performance evaluation

5. PERFORMANCE EVALUATION

5.1. Performance measures and experimental setup

To evaluate the proposed system, we focused on two main aspects:
(i) estimation of number of sources in different acoustic conditions
and (ii) extracted signal quality in terms of segmental speech distor-
tion index νsd [8], segmental interference reduction (segIR) ∆i, and
segmental noise reduction (segNR) ∆v , where the noise consists of
diffuse background noise and sensor noise. The quantities ∆v and
∆i were obtained by averaging segment-wise values of the segNR
and segIR computed over non-overlapping 30 ms segments. The av-
eraging was done in the linear domain for νsd, and in the logarithmic
domain for ∆v and ∆i. Given the residual noise v̂m, the segment-
wise NR for the i-th segment at microphone m was computed as

SegNRm(i) =

∑
t v

2
m(t) · wi(t)∑

t v̂
2
m(t) · wi(t)

, (13)

where wi is a rectangular window equal to one in segment i and
zero elsewhere. The segIR is computed similarly. For the perfor-
mance evaluation, one of the sources illustrated in Figure 3 was se-
lected as desired, and the remaining sources were considered as in-
terferers. In practice, the desired source can be for instance a source
that is located in certain region of the room, or if source separation
is required, each source can be extracted separately while reducing
the remaining sources. Note that as mentioned in the problem for-
mulation in Section 2, the proposed system assumes that the active
sources are coherent across the arrays. This is satisfied in scenarios
where the reverberation time is low to moderate or where the sources
are in the vicinity of the arrays. Only in such cases the sources can be
robustly detected using bin-wise position estimates. This is a reason-
able assumption for instance in meeting/teleconferencing scenarios
or smart home applications where multiple sources may be in the
vicinity of the array but only the signal of one source is desired.

Simulations were done in a 6×5×3 m3 shoe-box room, for the
scenarios in Figure 3. The microphone signals were obtained by
convolving clean speech signals with simulated room impulse re-
sponses [10], adding diffuse babble noise as background noise [11],
and adding uncorrelated sensor noise with desired signal-to-sensor
noise ratio of approximately 40 dB. While only the results for rever-
beration times T60 of 0.2 s and 0.35 s are evaluated here, the number
of source estimation algorithm has shown to work robustly up to
T600 = 600 ms, provided that the sources are in the vicinity of the
arrays. The sampling frequency was 16 kHz and the STFT length
was 64 ms with 50% overlap. Three uniform circular arrays were
used with three omnidirectional microphones each and a diameter
2.5 cm. The remaining parameters are given in Table 1.

5.2. Results: estimating number of sources

In Figure 4, the results of the number of source estimation algorithm
are presented for three activity patterns of the sources, and com-
pared to the ground truth value of the number of sources. Based on
the discussion in Section 3.3, where the source activity is monitored
using the so-called tokens, the ground truth is computed as follows:
a source is considered active in time frame n if it has been active
in at least one of the most recent L frames. The results in Figure 4
correspond to T60 = 350 ms, where the diffuse noise level was set
such that the input signal-to-noise ratio (iSNR) was approximately
5 dB. This was the worst case scenario among the evaluated acoustic
conditions. Whenever a new source appears, the algorithm promptly
detects it, even if multiple new sources appear simultaneously, as
in Fig. 4(c). The effect of the tokens stored in the vector t(n) is
illustrated in Fig. 4(a) and 4(c), where the shaded regions indicate
the time it takes for an inactive source to be discarded. Moreover,
the fact that the source number remains unchanged during speech
pauses in Figure 4(b) is also due to the token-based activity moni-
toring. In some applications, removing a source during short pauses
might have an adverse effect on the interference reduction if the in-
terferer becomes active again. The latency in detecting a new source,
which can be controlled by the parameter ηdet, is visible in Figure 4,
where the estimated number of sources deviates from the ground
truth at the onsets of a new source. The time it takes for a source to
be detected depends on the reverberation time, the noise level, and
the value of ηdet. For T60 = 200 ms and iSNR of 15 dB, the latency
was smaller than the one illustrated in Figure 4.

5.3. Results: evaluation of extracted signals

We evaluated the performance of the proposed framework and added
as a reference the results obtained with oracle source detection for
the PSD matrix updates, and with the probabilistic approach pro-
posed by the authors in [1]. The latter is denoted by ”EM-based”
(EM for Expectation Maximization) and requires the number of
sources in advance. Moreover, this approach can not be applied if
the number of sources varies online. The three approaches were
evaluated in a constant triple talk, for all scenarios in Fig. 3. As no
significant dependence on source positions was observed, the results
were averaged over the three scenarios. Diffuse noise was added to
obtain an iSNR of approx. 15 dB and 5 dB (upper and lower part of
Table 2, respectively). The results indicate that the ability to handle
dynamic scenarios comes at the cost of a slightly worse performance
compared to the EM-based approach. The most significant perfor-
mance drop is observed in terms of speech distortion, especially at
higher reverberation times. The segIR is only reduced by 1 dB on
average, and the segNR is slightly better for the proposed approach.
The results for the remaining activity patterns at iSNR ≈ 15dB are
given in Table 3. For the EM-based approach, the number of sources
was fixed to three, regardless of the activity pattern.

Online detection of active sources increases the response time of
the spatial filter to adapt to reduce new interferers. The segment-wise
IR during an onset of an interferer is shown in Fig. 5. Nevertheless,
position-based PSD matrix computation results in prompt adaptation
of the MVDR such that in 0.5 s the performance converges to the one
of the EM-based approach where the number of interferers and their
locations are known in advance. At the cost of artifacts, such as
musical noise and false alarms for new interferers, the response time
can be reduced by adjusting the parameters αxi and ηdet. The audio
files used in the evaluation are available at http://www.audiolabs-
erlangen.de/resources/2014-EUSIPCO-SE.
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Oracle EM-based Proposed
T60[s] 0.20 0.35 0.20 0.35 0.20 0.35

iSNR [dB] 14.0 14.9 14.0 14.9 14.0 14.9
iSIR [dB] -1.0 -1.6 1.0 -1.6 1.0 -1.6
segNR [dB] 6.9 6.8 4.7 4.9 5.1 5.2
segIR [dB] 18.8 16.5 15.5 12.8 15.1 11.2
νsd 0.023 0.066 0.025 0.058 0.034 0.120

iSNR [dB] 5.0 5.4 5.0 5.4 5.0 5.4
iSIR [dB] -1.0 -1.6 -1.0 -1.6 -1.0 -1.6
segNR [dB] 9.6 8.8 6.9 6.3 7.2 6.6
segIR [dB] 18.7 16.4 16.0 12.9 15.9 11.2
νsd 0.026 0.075 0.020 0.060 0.026 0.120

Table 2: Results for pattern2 (see Fig. 4).

Oracle EM-based Proposed
T60[s] 0.20 0.35 0.20 0.35 0.20 0.35

iSNR [dB] 14.0 14.9 14.0 14.9 14.0 14.9
iSIR [dB] 1.5 0.7 1.5 0.7 1.5 0.7
segIR [dB] 20.1 17.6 16.2 13.7 16.5 11.8
νsd 0.018 0.063 0.022 0.063 0.030 0.127

Table 3: Average results for pattern1 and pattern3.

6. CONCLUSIONS

A non-probablistic source extraction framework was proposed with a
geometry-based online number of source estimator. A desired source
was extracted using the microphone signals from distributed arrays.
The proposed approach does not require the number of sources in
advance and can be applied to extract a desired signal in dynamic
scenarios with time-varying number of interferers. Scenarios with
different source positions and source activities over time were sim-
ulated and satisfactory results were obtained for different noise con-
ditions and mild to moderate reverberation times. Future work in-
cludes evaluation of the proposed framework using measured data in
different acoustic conditions, as well as extension of the number of
sources estimator to handle moving sources.
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