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ABSTRACT
In this paper we experiment with 2-D source localization
in smart homes under adverse conditions using sparse dis-
tributed microphone arrays. We propose some improvements
to deal with problems due to high reverberation, noise and
use of a limited number of microphones. These consist of
a pre-filtering stage for dereverberation and an iterative pro-
cedure that aims to increase accuracy. Experiments carried
out in relatively large databases with both simulated and real
recordings of sources in various positions indicate that the
proposed method exhibits a better performance compared to
others under challenging conditions while also being compu-
tationally efficient. It is demonstrated that although reverber-
ation degrades localization performance, this degradation can
be compensated by identifying the reliable microphone pairs
and disposing of the outliers.

Index Terms— source localization, reverberation, outlier
elimination, sparse arrays

1. INTRODUCTION

Smart home environments have recently gained significant at-
tention due to the opportunities they offer in terms of ambient
assisted living and control via smart interfaces. Equipment in
such environments consists of a wide range of sensors placed
in the background enabling a more flexible and less intrusive
communication. Among several activities in this area lies the
DIRHA European funded project [1], which aims to achieve
distant speech interaction for the control of home automation
employing distributed microphone arrays.

Of importance in this context is the speaker’s location,
which can be used either as a front end to an automatic
speech recognition/speech enhancement system, or to iden-
tify the room of activity in order for the system to respond
to a command with the proper action. Microphone arrays
distributed across the rooms can be exploited to extract a
speaker’s location. Although much research has been carried
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out towards this direction, when environmental conditions are
extremely adverse, namely characterized by very high rever-
beration times (0.6s < T60

1< 2s) and extreme noise levels
(negative SNRs), source localization becomes challenging
and has not yet been successfully addressed.

Existing source localization algorithms can be divided
into three main categories: methods based on a) Steered
Response Power (SRP), b) High Resolution Spectral Esti-
mation (HRSE) and c) Time Difference of Arrival (TDOA)
estimation. An overview can be found in [3]. In [4] the per-
formance of TDOA estimation is investigated in relation to
room reverberation and it is demonstrated that reverberation
leads to severe degradations, even when at low levels. In [5]
reverberation is modelled in terms of source localization, but
this analysis is not applicable to environments where micro-
phones are placed on the walls. Also, reported experiments
and results on source localization usually consider very small
databases with a limited range of positions and moderate re-
verberation and do not usually allow a clear understanding of
the problems arising at more adverse conditions.

In this work we cope with extremely reverberant and
noisy conditions and aim to increase robustness towards re-
verberation effects without having knowledge of the room
impulse response or geometry. We propose a dereverberation
step to improve the quality of the data and an iterative outlier
elimination stage to improve the final source estimation. We
experiment with both simulated and real data including a
wide number of different sources and a quite small number
of microphone pairs and we end up with several interesting
observations.

2. PROPOSED SYSTEM

Our source localization system belongs in the TDOA estima-
tion methods category and is based on the popular General-
ized Cross Correlation - PHAse Transform (GCC-PHAT) [6],
due to our need for computational efficiency. It has been
shown [7] that PHAT transform is optimal among other time

1T60 is defined as the time taken for the reverberant energy to decay by
60 dB once the sound source has been abruptly shut off [2]
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Fig. 1: Example of the proposed outlier elimination algorithm (blue “star” is the true source, red “plus” is the estimated source, “X” indicates
the microphone positions and dotted line is max dist, from the estimated position to the possible outlier )

delay estimators when the reverberation is high enough.

2.1. TDOA estimation

Given a microphone i we can express its output as:

xi(t) = ais(t− τi) + ui(t) (1)

where xi is the output, s the source signal, τi the time-of-
flight (TOF) from the source to the microphone, ui the noise
and ai the attenuation factor due to the signal propagation
delay from the source to the microphone.

The TDOA estimation problem focuses on estimating
∆τij = τi− τj for a microphone pair (i, j). A lot of methods
addressing this issue have been proposed. A brief presenta-
tion of some of them can be found in [8]. Our system uses
Crosspower Spectrum Phase - Coherence Measure (CSP-
CM) [9], based on GCC-PHAT. It is suitable for real-time
applications because it is computationally efficient.

We denote by Xi(f, t) the Short-Time Fourier Transform
of the signal xi(t). The CSP-CM method computes

Cij(τ, t) =

∫ ∞
−∞

Xi(f, t)X
∗
j (f, t)

|Xi(f, t)||Xj(f, t)|
ej2πfτdf (2)

and estimates TDOA as ∆τij = arg maxτ Cij(τ, t) because
Cij(τ, t) is expected to have a global maximum at τ = ∆τij .

2.2. DOA estimation

After computing a TDOA for each microphone pair, we can
extract the source signal’s direction-of-arrival (DOA) with re-
spect to that pair. When microphones and source locations lie
on the same plane, the root locus of the points that represent
possible locations is a half hyperboloid in 2-D space. Assum-
ing a far-field propagation model, we can represent the DOA
as a line that connects the source and the middle of the line
connecting the two microphones. Then we get [10]:

d cos θ

c
= ∆τij ⇒ θ = cos−1

(
c∆τij
d

)
(3)

where θ is the angle of DOA, d is the distance between the
microphones and c is the sound velocity.

2.3. Source location estimation using Least Squares

If the TDOA estimations were ideally correct, all DOA lines
should be intersected at a common point. Of course, in prac-
tice this does not happen, thus, we have to combine them
in order to estimate the final source location. Our approach
is based on finding this point that minimizes the sum of the
squared distances from DOA lines. Intuitively, this is the
point located closest to all DOA lines. We denote as rk the
unitary vector parallel to the k-DOA line (computed from θ)
and p0k the point in the middle of the line connecting the
microphone pair k. For a random point a and aprojk the
projection of a on the k-DOA line, we compute the distance
D2
k(a) = ||a− aprojk ||2, for all k. If Ak = I− rkrTk :

D2
k(a) = (a− p0k)TAk(a− p0k) (4)

We find the source location a by minimizing:

E(a) =

M∑
k=1

D2
k(a) (5)

where M is the number of DOA lines. Essentially, we end up
with a closed-form solution using Least Squares [11].

2.4. Improving Robustness

In practice, the accuracy of the TDOA estimation highly de-
pends on the reverberation time, the noise level and the ori-
entation of the speaker. Thus, we propose a dereverberation
process in order to improve the quality of the data, described
in Sec. 2.4.1. As it will be demonstrated in Sec. 4, although
this step indeed improves the performance compared to the
baseline system, the presence of outlier DOA lines continues
to degrade final estimation. For this purpose, we also consider
an outlier elimination step described in Sec. 2.4.2.

2.4.1. Pre-filtering

In order to cope with extreme reverberation times, a dere-
verberation step that precedes that of TDOA estimation was
introduced in the system. Reverberation effects can be ex-
pressed as follows:

xi(t) = s(t) ∗ hi(t) + ui(t) (6)



where hi(t) is the impulse response between channel i and
source position. The dereverberation process is mainly based
on cepstral prefiltering [12]. Assuming static sources and
linear channels that vary slowly with time we can switch to
the cepstral domain, transforming the convolutive component
into an additive one, with which we can deal via linear filter-
ing. The complex cepstum is preferred instead of the real
one as it retains the phase information which is necessary
for the signal reconstruction. If we denote by ĥi[k] the cep-
strum of the impulse response, it can be shown that ĥi[k] =

ĥi,ap[k] + ĥi,min[k], where ĥi,ap[k] is the all-pass component
and ĥi,min[k] the minimum phase component (MPC). It is
claimed [12] that dereverberation can be achieved by subtract-
ing the MPC component of the channel cepstrum, assuming
that the additive noise is negligible compared to the convolu-
tive one, i.e. the reverberation and that the MPC of the source
signal cepstrum is zero-mean.

2.4.2. Eliminating outliers

As stated before, reverberation and noise effects may result
in erroneous TDOA estimation for some microphone pairs.
The pre-filtering technique indeed reduces the reverberation
but not totally. As it will be demonstrated in Sec. 4, among
the available microphone pairs in most cases there are some
that can accurately estimate a source location. Thus, our ef-
fort concentrated towards detecting these pairs and disposing
of the rest, which are considered as outliers. In search of
an objective metric for this purpose, we implemented three
methods: i) an SNR-based pair selection assuming that the
most reliable microphone pairs should have the highest SNR
(based on [10]), ii) a cross-correlation peak value pair selec-
tion assuming that the larger peak ensures a better estimation
and iii) a TDOA variance-based pair selection so as to dis-
pose of pairs that give significantly different estimations for
consecutive frames. None of these hypotheses were valid for
the full range of data, because of the severe degradation and
false correlation peaks imposed by reverberation. In [13],
the authors proposed an iterative method to solve the sys-
tem of DOA equations, as those for the minimization of (5),
which allows the disposition of outliers, namely the projec-
tion method. Expressing the system of DOA lines as Ax = b
where x is the unknown location, the proposed algorithm it-
erates over all DOA line equations by projecting the solution
on the hyperplanes represented by each individual equation.
At step i+ 1, the projected solution is:

xi+1 = xi +
ei
|ap|2

aTp (7)

where ap is the pth row of matrix A. At the ith iteration,
the pth row is utilized and ei = bp − apxi denotes the error,
where bp is the pth element of vector b. The equation with
the maximum distance to the projection point is the possible
outlier and will be removed if the error is over a threshold.

This algorithm eliminates one equation at a time and is termi-
nated when all the errors are under the threshold or the num-
ber of iterations exceeds a pre-set number. This method is
efficient when the number of available equations is large as
it asymptotically converges to the Least Squares solution. In
our case, due to the small number of microphone pairs, this
method is not effective. Thus, we propose an alternative itera-
tive method which is described in Alg. 1. First, a source loca-
tion is estimated using all available DOA lines, as explained
in Sec. 2.3. Then, we compute the distances between every
DOA line and the estimated source as stated in (4). We choose
the maximum among the latter which we compare to a thresh-
old. If it exceeds that threshold, the corresponding DOA line
is removed and a new location is estimated using the remain-
ing lines. This procedure is continued until either no DOA
line distance exceeds the defined threshold or we are left with
only two DOA lines. An example is depicted in Fig. 1.

Algorithm 1 Proposed Outlier Elimination
1: N ← number of DOA lines
2: while N ≥ 2 or max dist > threshold do
3: compute source location (sloc) via LS using N lines
4: D(k)← dist(sloc, line(k))2 for each k-line
5: max dist← maxD(k)
6: if max dist > threshold then
7: N ← N − {k}
8: end if
9: end while

3. DATABASES

3.1. DIRHA simulated and real corpora

For the source localization experiments we used two sets
of data [14], simulated and real, provided by the DIRHA
project, based on a smart home (apartment) located in Trento,
Italy. This is equipped with forty microphones, distributed
into twelve 2- or 3-element arrays located at the apartment
walls, and two 6-microphone arrays located at the ceilings of
the two rooms considered of interest, namely the living room
and the kitchen (see also Fig. 2). It should be noted that the
apartment exhibits significant reverberation.

In the case of simulated data, speech is first recorded
in a clean environment in four languages (Austrian Ger-
man, Greek, Italian, and European Portuguese). The data
are then convolved with estimated impulse responses of the
DIRHA smart home for a wide range of static source loca-
tions, while pre-recorded acoustic events and background
noise at high SNR levels are superimposed, giving rise to
multi-microphone, noisy, far-field speech data. A total of 40
1-min multi-channel simulated sequences are available (10
for each language). These sequences contain more than one
speech segments in different source locations and/or orienta-
tions. The whole database consists of 159 different speech
segments. It should be noted that only few wall microphone
pairs are available for the source localization task, because
the arrays are sparsely distributed inside the rooms.



Fig. 2: Floorplan of the DIRHA apartment, with all source posi-
tions and orientations as well as the 40 microphone positions de-
picted (from [15]).

Fig. 3: DMN floorplan

The real data contain 10 sessions of recorded wizard-
of-Oz like interaction between users and a speech-enabled
home-automation system in Italian. In all cases, the user is
located in the living room or kitchen, may be moving, and
no acoustic events are present (see also [15]). The number of
speech segments in this case is 79.

3.2. DMN database

For further validation we performed experiments in one
more database, namely the Distributed Microphone Network
database (DMN), provided by Fondazione Bruno Kessler
(FBK). This database was collected in a smart room with
21 microphones distributed in 7 triads on the four walls (see
Fig. 3). It consists of five single speaker recordings in five
different positions. It is a small database with relatively high
reverberation time and noise levels. In contrast to DIRHA
databases, this one has a quite large number of available mi-
crophone pairs, since all 21 microphones are located within a
single room. Source localization results for DMN have also
been reported in [16].

Oracle Upper bound without pre-filtering
Oracle-D Upper bound with pre-filtering

CSP CSP-CM
CSP-O CSP-CM with outlier elimination
CSP-D CSP-CM with pre-filtering

CSP-D-O CSP-CM with pre-filtering and outlier elimination
SRP SRP-PHAT

SRP-D SRP-PHAT with pre-filtering

Table 1: Various source localization approaches and acronyms.

Pcor RMSE (in cm)
CSP 100% 34
SRP 100% 9

Table 2: Results on DMN database.

4. EXPERIMENTAL EVALUATION

For source localization, fine and gross estimation errors are
distinguished, the former corresponding to cases when the
distance between the reference and hypothesized sources is
less than 50 cm. The percentage of such errors over all speech
segments is referred to as the “Pcor” metric. For the com-
putation, the full speech events are considered and one po-
sition per speech event was computed. Also, the root mean
square error is calculated, separately for fine errors (RMSEf)
and for all errors (RMSE). Table 1 summarizes the various
implemented methods. For all methods, the window length
was 50ms and the overlap 30ms.

First, the results for the DMN database are presented in
Table 2. These results concern two baseline systems, the CSP-
CM as described in Sec. 2 without the additional steps and
the SRP-PHAT system [17, 18]. Both systems achieve 100%
correct source estimation, while SRP-PHAT seems to yield
more accurate estimations, with RMSE just 9cm.

Next, we experimented with DIRHA simulated and real
corpora. In order to evaluate our method, we first obtained
the best estimations our algorithm could achieve (the upper
bound) if we could estimate the most reliable microphone
pairs for each position. The motivation behind this lies in
the observation that although CSP-CM fails in most cases to
produce satisfying estimations, among all microphone pairs
there are several that indeed yield correct ones. Thus, know-
ing the ground truth source positions, we experimented with
all possible microphone pair combinations and obtained an
“oracle” result both with and without the pre-filtering step. In
terms of comparison, we also experimented with SRP-PHAT
both with and without a pre-filtering stage.

Table 3 summarizes the results for all implemented meth-
ods on DIRHA databases. As it can be noticed, the problem
is very challenging. All baseline methods degrade and fail to
produce correct estimations for the whole database. However,
the “Oracle-D” result indicates that if we knew or could es-
timate the most reliable microphone pairs, we could achieve
a more accurate source localization result. The two proposed
steps, the pre-filtering and the outlier elimination increase
the robustness of the baseline system, not achieving however



Simulated Data Real Data

Pcor RMSEf RMSE Pcor RMSEf RMSE
(in cm) (in cm) (in cm) (in cm)

Oracle 77.3% 16 37 89.8% 20 27
Oracle-D 84.3% 15 28 82.3% 17 28

CSP 30.0% 27 109 49.1% 32 63
CSP-O 40.3% 19 210 46.8% 29 69
CSP-D 44.7% 27 75 49.1% 27 98

CSP-D-O 51.0% 18 78 49.1% 27 75
SRP 16.9% 19 178 11.0% 23 166

SRP-D 48.0% 21 105 18.7% 21 159

Table 3: Results on DIRHA corpora.

a high “Pcor” rate. In case of simulated data, the best per-
formance is achieved by the proposed system,“CSP-D-O”,
yielding 51% fine errors, while “SRP-D” achieves a rate of
48% fine errors. In case of real data, where the speaker moves
slowly with time, the best result comes from “CSP”,“CSP-D”
and “CSP-D-O”. Here it seems that the proposed additions
do not offer much in terms of increasing the system’s robust-
ness. This can be explained in two aspects: first, considering
dereverberation, it should be noted that the approach fol-
lowed in Sec. 2.4.1 makes the assumption of a static speaker
which means that the subsequent hypothesis of a slowly vary-
ing channel impulse response is not accurate. Secondly, in
contrast to the simulated corpora where the “speaker” is ac-
tually a loudspeaker (meaning a more directive source), here
because of real human voice which is less directive, the elim-
ination of outliers does not seem to add much. In some cases
it even seems to compromise some not so bad estimations.

Concerning the SRP-PHAT algorithm, its low perfor-
mance for the DIRHA corpora in comparison to the one for
DMN database can be attributed to the very small number of
available microphone pairs (5 pairs for Living room and 4
pairs for Kitchen) and the high noise of the former. It seems
that although it can give accurate estimations, it needs quite a
large number of microphone pairs in order to compensate for
the reverberation and noise effects. Also, for real data, this
hypothesis of a static speaker is false.

Lastly, it should be pointed out that the CSP approaches
yield a source location estimation in much less time than the
signal’s duration, while SRP-PHAT as implemented in [18]
is quite slow and not appropriate for real-time applications.

5. CONCLUSION

Results reported in this paper indicate that when the con-
ditions are extremely adverse and the number of available
microphone pairs too small, the source localization task be-
comes quite challenging. We have provided two algorithmic
improvements that increase robustness, one based on an ef-
ficient way to eliminate outliers and another on pre-filtering
to reduce reverberation. We have also demonstrated that even
under these conditions, a satisfying accuracy can be achieved
if outliers are properly detected. Further study is needed to-

wards modelling reverberation and noise in smart rooms and
successfully eliminating their effects, as well as detecting the
outliers.
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