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ABSTRACT

We consider the problem of optimal statistical filtering in non-
linear and non-Gaussian systems. The novelty consists of ap-
proximating the non-linear system by a recent switching sys-
tem, in which exact fast optimal filtering is workable. The
new method is applied to filter stochastic volatility model and
some experiments show its efficiency.

Index Terms— Non-linear systems, Stochastic volatility
model, Optimal statistical filter, Conditionally Gaussian lin-
ear state-space model, Conditionally Markov switching hid-
den linear model, Filtering in switching systems.

1. INTRODUCTION

Let us consider two random sequences XN
1 = (X1, . . . ,XN )

and YN
1 = (Y1, . . . ,YN ), taking their values in Rm and

Rq respectively. XN
1 is hidden, while YN

1 is observed. The
“optimal filter” problem we deal with in this paper consists of
the sequential search of XN

1 from YN
1 . More precisely, with

usual notations for conditional expectations and variances,
we search E

[
Xn+1

∣∣yn+1
1

]
and E

[
Xn+1X

T
n+1

∣∣yn+1
1

]
from

E [Xn |yn
1 ], E

[
XnX

T
n |yn

1

]
and yn+1.

The modelling of the distribution p
(
xN

1 ,y
N
1

)
of the cou-

ple (XN
1 ,Y

N
1 ) we deal with in this paper is the classical hid-

den Markov chain, which can be neither Gaussian nor linear.
Thus p

(
xN

1 ,y
N
1

)
is defined by p (x1,y1) and recursions:

Xn+1 = F (Xn,Un+1); (1)
Yn+1 = G(Xn+1,Vn+1), (2)

where U1, V1, . . .UN , VN are appropriate independent
variables. We will consider the stationary case, which means
that the distributions p (xn,xn+1) , p (yn |xn ) resulting
from (1), (2) do not depend on n. Thus the whole distribution
p
(
xN

1 ,y
N
1

)
is defined by the distribution p (x1,y1,x2,y2) =

p (x1,x2) p (y1 |x1 ) p (y2 |x2 ), which gives p (x1,y1) (equal
to p (xn,yn) for any n), p (x2 |x1 ) (equal to p (xn+1 |xn )
for any n), and p (y1 |x1 ) (equal to p (yn |xn ) for any n).

The novelty of this work is to approximate the distribu-
tion p (x1,y1,x2,y2) by a mixture with K2 components, in
such a way that the switching model defined by the mixture
would allow a fast exact optimal filter. Such an approxima-
tion had limited interest until recently as it is well known that
exact filters do not exist in classical switching models [1–
3]. However, a class of switching models, called “condition-
ally Markov switching hidden linear models” (CMSHLMs),
in which exact fast filters do exist, has been proposed recently
in [4], and thus the idea is to use them.

More precisely, consider the “mixture approximation”

p
(
x2

1,y
2
1

)
=

∑
1≤i,j,≤K

αi,j pi,j(x
2
1,y

2
1). (3)

Coefficient αi,j can be interpreted as a distribution αi,j =
P (R1 = i, R2 = j) of a couple of random variables
(R1, R2) taking their values in Ω = {1, . . . ,K}. The
novelty is to consider the stationary triplet Markov chain
TN

1 = (XN
1 ,R

N
1 ,Y

N
1 ), with RN

1 = (R1, . . . , RN ), whose
distribution is defined by

p
(
x2

1, r
2
1,y

2
1

)
= αr1,r2 pr1,r2(x2

1,y
2
1), (4)

which would belong to the CMSHLM family [4].
In this paper, we propose to use suitable Gaussian distri-

butions pi,j(x2
1,y

2
1) and show that the exact filtering in ap-

proximate model works well under very weak hypotheses.
In fact, all we need is to be able to sample realizations of
(XN

1 ,Y
N
1 ) according to (1), (2). More precisely, once such a

sample is simulated, we consider it as being a sample of a hid-
den discrete Markov chain (RN

1 ,Z
N
1 ), with RN

1 hidden and
ZN

1 = (XN
1 ,Y

N
1 ) observed, and we estimate the mixture pa-

rameters of interest via a kind of “Expectation-Maximization”
(EM) algorithm. Our method is tested, and provides interest-
ing results with respect to the classic Particle Filter (PF), on
the following classic stochastic volatility model [3, 5]:

Xn+1 = µ+ φ(Xn − µ) + σUn; (5)
Yn+1 = β exp(Xn+1/2)Vn+1, (6)

with U1, V1, . . . , UN , VN independent centred Gaussian
variables with variance 1.



Our method appears as an alternative to the widely used
particle filter based methods, in particular applied in eco-
nomics and finance [3, 5–7] or tracking [2, 3]. The paper is
organized as follows. In next Section, we first recall the par-
ticular switching model studied in [8], which belongs to the
CMSHLMs family [4], and thus which allows one to perform
fast exact optimal filtering. The mixture estimation, which
provides the approximation (3), is specified in Section 3.
Fourth Section contains experiments and the last one draws
conclusions and perspectives.

2. EXACT FILTERING IN CONDITIONALLY
MARKOV SWITCHING HIDDEN LINEAR MODELS

Let us consider three random sequences XN
1 , RN

1 , and YN
1 ,

as specified in Introduction. Both XN
1 and RN

1 are hidden,
while YN

1 is observed. The process RN
1 can be seen as mod-

elling the random “switches” of the distributions linked with
(XN

1 ,Y
N
1 ) . The “optimal filter” problem we deal with in

this section consists of the sequential search of (RN
1 ,X

N
1 )

from YN
1 . More precisely, we search p

(
rn+1

∣∣yn+1
1

)
,

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
from p (rn |yn

1 ), E [Xn |rn,yn
1 ], E

[
XnX

T
n |rn,yn

1

]
and

yn+1. The optimal filter is then given by E
[
Xn+1

∣∣yn+1
1

]
=∑

rn+1
p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and its vari-

ance Var
[
Xn+1

∣∣yn+1
1

]
obtained from

E
[
Xn+1X

T
n+1

∣∣yn+1
1

]
=
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
.

Such a problem is of importance in numerous situations
and hundreds papers deal with different solutions for several
decades. Usually, the distribution of TN

1 = (XN
1 ,R

N
1 ,Y

N
1 )

is defined assuming the Markovianity of (XN
1 ,R

N
1 ), and then

defining the distribution of YN
1 conditional on (XN

1 ,R
N
1 ) as

being of the form p
(
yN

1

∣∣rN1 ,xN
1

)
=
∏N

n=1 p (yn |rn,xn ).
Fast exact filtering has not been proposed in such models
until now, the problem coming from the fact that the dis-
tributions p (rn |yn

1 ) are not easy to compute. A different
model, called “Conditionally Markov Switching Hidden Lin-
ear Model” (CMSHLM), in which fast exact filtering is possi-
ble, has been recently proposed in [4] (see also its comparison
with classic models in [9]). Here we will consider its partic-
ular Gaussian form studied in [8], which will be called “Sta-
tionary Conditionally Gaussian Observed Markov Switching
Model” (SCGOMSM).

First, we will assume that

p (rn+1 |xn
1 , r

n
1 ,y

n
1 ) = p (rn+1 |rn ) . (7)

In particular, this implies that RN
1 is a Markov chain. Let

us set Zn = (Xn,Yn)T , and Wn = (Un,Vn)T (Gaus-

sian white noise), ΓZn = Cov(Zn,Z
T
n )T . Let us consider

a stationary TN
1 , with Gaussian pr21(x2

1,y
2
1) in (4). Thus we

can say that the distribution of TN
1 is defined by p

(
r2

1

)
(with

equal margins) and Gaussian distributions given by means
and covariance matrices

MZ(r1) =

[
MX(r1)

MY(r1)

]
= E [Z1 |R1 = r1 ] , (8)

ΓZ1,Z2(r1, r2) = E
[
(Z1 −MZ(r1))(Z2 −MZ(r2))T

]
. (9)

Then, setting

ΓZ1,Z2(r2
1) =

[
ΓZ1

(r1) ΓT
Z1,Z2

(r2
1)

ΓZ1,Z2
(r2

1) ΓZ2
(r2)

]
, (10)

A(r2
1) = ΓZ1,Z2

(r2
1) Γ−1

Z1
(r1), (11)

and considering B(r2
1)BT (r2

1) such that

B(r2
1)BT (r2

1) = ΓZ2
(r2)−

ΓZ1,Z2
(r2

1) Γ−1
Z1

(r1) ΓT
Z1,Z2

(r2
1), (12)

we can state that the distribution of TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) is

defined by the following conditions

RN
1 is a Markov chain; (13)

Zn+1 = A(Rn+1
n )(Zn −MZ(Rn)) +

B(Rn+1
n )Wn+1 + MZ(Rn+1) (14)

with A and B verifying (11), (12), and (Wn) a Gaussian
white noise with identity covariance matrix.

For reasons specified in Remark 1 below, we will consider
that A(rn+1

n ) has the following form

A(rn+1
n ) =

[
A1(rn+1

n ) 0

0 A4(rn+1
n )

]
. (15)

Then the model (7)-(15) is a particular CMSHLM and thus
allows exact fast filtering, whose exact run is specified below.

Remark 1 As shown in [8], model (7)-(15) is close to the
classic “Conditionally Gaussian Linear State Space Model”
(CGLSSM) [1, 3], whose general form is:

RN
1 is a Markov chain;

Xn+1 = C1
n+1(Rn+1)(Xn −MX(Rn)) +

C2
n+1(Rn+1)Un+1 + MX(Rn+1)

Yn+1 = C3
n+1(Rn+1)(Xn −MX(Rn)) +

C4
n+1(Rn+1)Vn+1 + MY(Rn+1).

Let us notice that in the model (7)-(15), p
(
xN

1

∣∣rN1 ,yN
1

)
is

of (1)-(2) kind, which has been chosen on purpose to be
weel-suited to this classic form. However, other families of



Gaussian distributions could have been considered. More pre-
cisely, any A(rn+1

n ) of the form (16) would still allow exact
filtering [9]

A(rn+1
n ) =

[
A1(rn+1

n ) A2(rn+1
n )

0 A4(rn+1
n )

]
. (16)

For latter use, from (14) and (15), let

NX(rn+1
n ) = MX(rn+1)−A1(rn+1

n )MX(rn),

NY(rn+1
n ) = MY(rn+1)−A4(rn+1

n )MY(rn),

and Q(Rn+1
n ) = B(rn+1

n )BT (rn+1
n )

Q(rn+1
n ) =

[
Q1(rn+1

n ) Q2(rn+1
n )

Q3(rn+1
n ) Q4(rn+1

n )

]
.

Let us specify how the exact filtering runs. As the pro-
posed method remains valid in any case of mixtures (3)
once (4) defined a CMSHLM, we will first briefly recall the
definition of a CMSHLM and then specify how the filter runs.
A CMSHLM verifies:

TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) is Markov with

p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
; (17)

Xn+1 = F(rn+1
n ,yn+1

n )Xn+

G(rn+1
n ,yn+1

n )Wn+1 + H(rn+1
n ,yn+1

n ) (18)

with F(rn+1
n ,yn+1

n ), G(rn+1
n ,yn+1

n ) appropriate matrices,
Wn+1 appropriate white noise, and H(rn+1

n ,yn+1
n ) appro-

priate vectors. p
(
rn+1

∣∣yn+1
1

)
, E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and

E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
can then be computed from

p
(
rn+1,yn+1 |rn,yn

)
, F(rn+1

n ,yn+1
n ), H(rn+1

n ,yn+1
n ),

p (rn |yn
1 ) and E [Xn |rn,yn

1 ] with complexity independent
from n as follows:

p
(
rn+1

∣∣yn+1
1

)
=

∑
rn

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn,r∗n+1

p
(
r∗n+1,yn+1 |rn,yn

)
p (rn |yn

1 )
,

(19)

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
r∗n

p
(
rn+1,yn+1 |r

∗
n,yn

)
p (r∗n |yn

1 )

(20)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
F(rn+1

n ,yn+1
n )E [Xn |rn,yn

1 ] + H(rn+1
n ,yn+1

n )
)
,

(21)

and

E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
F(rn+1

n ,yn+1
n )E

[
XnXT

n |rn,yn
1

]
FT (rn+1

n ,yn+1
n )+

F(rn+1
n ,yn+1

n )E [Xn |rn,yn
1 ] HT (rn+1

n ,yn+1
n )+

H(rn+1
n ,yn+1

n )ET [Xn |rn,yn
1 ] FT (rn+1

n ,yn+1
n )+

G(rn+1
n ,yn+1

n )GT (rn+1
n ,yn+1

n )
)
.

(22)

Let us now verify that SCGOMSM TN
1 defined by

p (r1, r2) and (7)-(15) is a CMSHLM (17)-(18). Let us first
verify (17). According to (7) we have p (rn+1 |xn, rn,yn ) =
p (rn+1 |rn ) and, according to (14)-(15), we have
p
(
yn+1

∣∣xn,yn, r
n+1
n

)
= p

(
yn+1

∣∣yn, r
n+1
n

)
. These two

equalities give

p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
.

Let us now verify (18). According to (14) the distribution
p
(
xn+1,yn+1

∣∣xn, r
n+1
n ,yn

)
is Gaussian with mean[

A1(rn+1
n )xn + NX(rn+1

n )

A4(rn+1
n )yn + NY(rn+1

n )

]
and variance Q(rn+1

n ). Using the classical Gaussian condi-
tioning rules we can say that the distribution
p
(
xn+1

∣∣xn, r
n+1
n ,yn+1

n

)
is then Gaussian with mean

A1(rn+1
n )xn + NX(rn+1

n ) + Q2(rn+1
n )(Q4(rn+1

n ))−1(
yn+1 −A4(rn+1

n )yn −NY(rn+1
n )

)
,

and variance

Q1(rn+1
n )−Q2(rn+1

n )(Q4(rn+1
n ))−1Q3(rn+1

n ).

Then we can state, according to classic properties of
Gaussian laws, that (18) is verified with

F(rn+1
n ,yn+1

n ) = A1(rn+1
n ),

H(rn+1
n ,yn+1

n ) = Q2(rn+1
n )(Q4(rn+1

n ))−1

(Yn+1 −A4(rn+1
n )Yn −NY(rn+1

n )) + NX(rn+1
n ),

G(rn+1
n ,yn+1

n )GT (rn+1
n ,yn+1

n ) =

Q1(rn+1
n )−Q2(rn+1

n )(Q4(rn+1
n ))−1Q3(rn+1

n ).
(23)

Finally, for given MZ(rn), ΓZ1,Z2(rn+1
n ), p (rn |yn

1 ),
E [Xn |rn,yn

1 ], and yn+1, the optimal filter in the system (7)-
(15) is

Algorithm 1
(i) consider MZ(rn) and ΓZ1,Z2(rn+1

n ) verifying (8), (9);
(ii) compute Q(rn+1

n ) using (12);
(iii) compute F(rn+1

n ,yn+1
n ), H(rn+1

n ,yn+1
n ) and

G(rn+1
n ,yn+1

n )GT (rn+1
n ,yn+1

n ) with (23);
(iv) compute p

(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn )

p
(
yn+1

∣∣rn+1
n ,yn

)
, knowing that p

(
yn+1

∣∣rn+1
n ,yn

)
is Gaussian with mean A4(rn+1

n )yn + NY(rn+1
n ) and

variance Q4(rn+1
n );

(v) compute p
(
rn+1

∣∣yn+1
1

)
, E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and

E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
with (19)-(22).



3. APPROXIMATING STOCHASTIC VOLATILITY
MODELS WITH CMSHLM

The idea is to simulate data ZN
1 = (XN

1 ,Y
N
1 ) = (xN

1 ,x
N
1 )

with a non-linear and non-Gaussian model (1)-(2) and then to
consider them as generated by a model TN

1 = (XN
1 ,R

N
1 ,Y

N
1 )

verifying (7)-(15). Therefore the sampled data zN1 = (xN
1 ,y

N
1 )

are considered as produced by a classic Gaussian hidden
Markov model (RN

1 ,Z
N
1 ). The model identification problem

is then an HMC estimation problem and there exist several
methods to deal with. We chose to use a method involving the
classic Expectation-Maximization (EM) algorithm, knowing
that EM proved to be quite efficient in Gaussian cases we deal
with. More precisely, we propose the following:

Algorithm 2
(i) from simulated zNEM

1 , estimate parameters of the Gaus-
sian hidden Markov model (RNEM

1 ,ZNEM
1 ) with EM

(see paragraph Parameters estimation with EM below);
(ii) use the estimated parameters to estimate RNEM

1 =
r̂NEM
1 with the Maximum Posterior Mode (MPM);

(iii) use r̂NEM
1 and zNEM

1 to estimate the complementary co-
variances ΓZ1,Z2

(r2
1) in (10).

Finally, the whole filter proposed runs as follows:

Main algorithm
(a) use Algorithm 2 to estimate the parameters of the cor-

responding SCGOMSM;
(b) simulate data zN1 according to model (1), (2) consid-

ered, and use Algorithm 1 to perform the fast filter.
Of course, sampled data zNEM

1 used in Algorithm 2 are not
the data zN1 used in the filtering.

Parameters estimation with EM
Let us briefly recall how the classic EM algorithm runs in
simplified model (i), Algorithm 2. Let ZN

1 = (XN
1 ,Y

N
1 )

and TN
1 = (RN

1 ,Z
N
1 ). For known parameters forward prob-

abilities α(rn) = p (rn, z
n
1 ) and backward ones β(rn) =

p
(
zNn+1 |rn

)
are computed recursively with α(r1) = p(t1),

α(rn+1) =
∑

rn∈Ω α(rn)p (tn+1 |tn ) for 1 ≤ n ≤ N − 1;
β(rN ) = 1, β(rn) =

∑
rn+1∈Ω β(rn+1)p (tn+1 |tn ) for 1 ≤

n ≤ N − 1.
Then we have

p
(
rn+1
n

∣∣zN1 ) =
α(rn)p (tn+1 |tn )β(rn+1)∑

r∗n∈Ω

α(r∗n)β(r∗n)
,

and thus

p
(
rn
∣∣zN1 ) =

α(rn)β(rn)∑
r∗n∈Ω

α(r∗n)β(r∗n)
.

The parameters, set in a vector θ, are for i, j ∈ 1, . . . ,K:
pi,j = p (R1 = i, R2 = j), MZ(i) = E [Z1 |R1 = i ], and
ΓZ(i) = Var [Z |R1 = i ].

Table 1. Four cases corresponding to four different values for
Φ (σ2 = 1 − Φ2, µ = 0.5, β = 0.5). Mean square error
obtained with the new method (for K = 2 to 7 classes), and
with the particle filter method. The time of restoration for
N = 1000 data is given between parentheses (time in hun-
dredth of second).

# Φ 2 3 5 7 PF

1 0.99
0.45 0.30 0.24 0.22 0.21

(2.76) (4.15) (10.88) (20.73) (52.78)

2 0.90
0.57 0.50 0.47 0.47 0.46

(2.83) (4.29) (10.86) (20.98) (53.86)

3 0.80
0.65 0.59 0.58 0.57 0.57

(2.77) (4.27) (10.80) (21.38) (53.33)

4 0.50
0.75 0.71 0.70 0.70 0.70

(2.97) (4.41) (10.79) (19.63) (52.60)

Let Ψ
(q)
n (i, j) = p

(
rn = i, rn+1 = j

∣∣zN1 , θ(q)
)

and
φ

(q)
n (i) = p

(
rn = i

∣∣zN1 , θ(q)
)
. EM is an iterative method,

which produces a sequence θ(0), . . . , θ(q), . . . in the following
way. Consider θ(0) found in some ways, calculate θ(q+1) from
θ(q) by

p
(q+1)
i,j =

N∑
n=1

Ψ(q)
n (i, j)

N∑
n=1

φ(q)
n (i)

; MZ(i)(q+1) =

N∑
n=1

znφ
(q)
n (i)

N∑
n=1

φ(q)
n (i)

;

ΓZ(i)(q+1) =

N∑
n=1

[ (
zn −MZ(i)(q+1)

)
(
zn −MZ(i)(q+1)

)T
φ(q)
n (i)

]
/

N∑
n=1

φ(q)
n (i).

Stop iterations according to some criterion.

4. EXPERIMENTS

Let us consider the stochastic volatility model (5), (6) as an
example of state-space system (1), (2). We present in Table 1
results of four experiments with different values for Φ and
σ2, with µ = 0.5, β = 0.5 (in all cases Var [Xn] = 1, so that
σ2 = 1− Φ2). Then we applied the whole filter with varying
number of classes, from K = 2 to K = 7. Comparison
is also performed with the classic Particle Filter (PF)1 (1500
particles and Sequantial Importance Resampling).

The number of EM iterations was set to 100, NEM =
20000 and N = 1000. The Means Square Error (MSE)
results correspond to the means of 100 independent experi-
ments. When using 4 or 5 values for each rn the results are
comparable to those obtained with PF. When choosing 1500

1Algorithm was taken from http://www.ece.sunysb.edu/

˜zyweng/particle.html
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Fig. 1. Case 1 in Table 1. Up: trajectory of the hidden sig-
nal (magenta) and the noisy one (black). Down: real signal
(magenta), proposed filter results for K = 2 classes (blue,
dashed), and K = 5 classes (green, dotted).

particles, PF is faster than our method because of the EM al-
gorithm; however, once the parameters learnt, our method is
as fast as the classic Kalman filter, and faster than the PF (see
Table 1). A restored trajectory corresponding to case 1 is pre-
sented in Figure 1.

Whatever SV parameters, the results remain comparable
to the PF ones beyond 4 classes, which means that they are
close to the optimal ones. The question of the automatic se-
lection of an optimal value of K for a given model is an open
issue that should be further addressed.

5. CONCLUSION

We proposed a new method for the sequential search of a
hidden signal in non-linear and non-Gaussian systems. The
method is quite general and works under slight conditions; in
fact, it is only required to be able to sample data according
to the non-linear model considered. The method is based on

the introduction of a Gaussian switching model, which ap-
proximate the system considered, and in which a fast exact
optimal filtering is feasible. Once the parameters of the Gaus-
sian switching model are estimated, the method is as complex
as the classic Kalman filter. In addition, contrary to PF, it
remains fast when the hidden realizations space and the ob-
servation one increase.

The method has been applied to a simple stochastic
volatility model and it turns out that the MSE obtained is
very close to the theoretical one, the latter having been esti-
mated by the classical particle filter based method.

As perspectives, let us mention applications to other
stochastic volatility models [4, 7, 8], applications to Bayesian
tracking [3, 4], or the use of more complex families of switch-
ing models allowing fast exact filter. Parameter estimation
allowing unsupervised filtering is another perspective.
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