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ABSTRACT
A multi-microphone hypothesis combination approach, suit-
able for the distant-talking scenario, is presented in this pa-
per. The method is based on the inter-microphone agreement
of information, extracted at speech recognition level. Par-
ticularly, temporal information is exploited to organize the
clusters that shape the resulting confusion network, and to
reduce the global hypothesis search space. As a result, a sin-
gle combined confusion network is generated from multiple
lattices. The approach offers a novel perspective to solutions
based on confusion network combination. The method was
evaluated in a simulated domestic environment equipped with
largely spaced microphones. The experimental evidence sug-
gests that results, comparable or, in some cases, better than
the state of the art, can be achieved under optimal configura-
tions with the proposed method.

Index Terms— Distant speech recognition, hypothesis
combination, multi-microphone, confusion networks

1. INTRODUCTION

Our voice, as a means to interact with an automatic system,
is a powerful instrument. Over the last decade, it has been
observed an increasing introduction of Automatic Speech
Recognition (ASR), in several services and application fields.
Moreover, with the potential of improving the quality of life
of physically impaired people, smart voice-operated domestic
spaces equipped with sensors and remotely operable devices
have been envisioned. As example, a related recent work is
the “Distant-Speech Interaction for Robust Home Applica-
tions” (DIRHA) Project1, in which a non-intrusive interaction
between a motor impared user and an automated house is ex-
plored. For this purpose, the use of multiple distributed
microphones in a space is a commonly adopted strategy. This
strategy empowers signal and speech processing methods, ex-
ploiting the complementarity and redundancy of information.
In such a setup, approaches based either on the selection or
on the fusion of information are addressed.

1The research leading to these results has partially received funding from
the European Union’s 7th Framework Programme (FP7/2007-2013) under
grant agreement n. 288121 DIRHA (see http://dirha.fbk.eu).
∗ The author is a PhD student at the ICT School - University of Trento

Under the first category of approaches, we can mention
Channel Selection [1, 2], which aims at limiting the poste-
rior processing to a subset of signals or components. For the
second category, efficient fusion methods at signal, feature,
model, or hypothesis level are under study. Feature and model
combination techniques, generally subject to restrictive as-
sumptions, require an additional step for the integration of
the multiple channel processing outputs. When a single out-
put is the target, signal fusion methods are perhaps the most
popular lines of fusion research. Beamforming is an example
of these methods, in which a specific geometrical configura-
tion of a microphone array allows spatial filtering of sounds
based on the relative locations of the sources. Under loosely
specified distant microphone configurations, its application is
not advisable, since spatial aliasing and other artifacts would
strongly affect the resulting fusion. Hypothesis combination,
though higher in complexity than the previously described ap-
proach, supports the exploitation of the information captured
by different sensors, without being limited to specific charac-
teristics of a microphone network.

In the context of distant speech recognition, a well-known
hypothesis combination method is Confusion Network Com-
bination [3]. The method mixes individual Confusion Net-
works (CNs) [4] into a single clustered structure. The CNs
are extracted from the lattices produced by decoding different
microphone signals. This framework was motivated by Min-
imum Bayes Risk Decoding, which addresses the mismatch
between the Bayes decision rule and the evaluation criterion
in standard statistical speech recognition. As a result, a better
recognition performance is achieved.

In this work, a domestic environment, with largely
spaced and distributed microphones, is considered as re-
search ground. In this context, other works are reported in
the literature, as [5] which compared beamforming and other
fusion techniques. Our paper extends a preliminary investi-
gation [6] conducted with a reduced number of microphones.
The goal is to provide a different approach for hypothesis
combination, more suited for multi-microphone settings, and
comparable to the state of the art. The basis of the proposed
method of multi-microphone CN extraction, referred in the
following as MMCN, is the agreement of temporal features
among the lattices to be combined.



The remainder of this paper is organized as follows. Sec-
tion 2 introduces the standard hypothesis space combination
approach. In Section 3, MMCN method is described. Section
4 presents the experimental setup. The discussion of the re-
sults and findings are detailed in Section 4. The conclusions
and future work are reported in Section 5.

2. MINIMUM BAYES RISK
IN HYPOTHESIS SPACE COMBINATION

The goal of standard ASR decoders is to identify the sequence
(W ) of words or symbols which maximizes the sequence pos-
terior probability (P (W |X)), where X corresponds to the
acoustic observation sequence. This is enclosed under the
Maximum A Posteriori rule:

W ∗ = arg max
W

P (W |X) (1)

= arg max
W

P (W )P (X|W ) (2)

where P (W ) is the score given by the language model, and
P (X|W ) is the acoustic model probability. The recognition
output, however, is evaluated on a word level basis. A mis-
match holds between the decoding and the evaluation, which
motivated the study of approaches addressing this issue. Min-
imum Bayes Risk (MBR) Decoding [7] comprises the diverse
work explored in this respect. Its target is the extraction of a
W that minimizes the expected Word Error Rate.

Consensus Decoding [4] was proposed as a MBR decod-
ing approach. The method takes, as input, the lattice gen-
erated by a decoder, and produces a very compact clustered
version of it, denominated a confusion network (CN). The
extracted network is the result of a series of iterative merging
steps. In the CN, the final hypothesis is extracted by a sim-
ple selection of the unit (a word or a silence) with the high-
est posterior probability at each cluster. This technique has
been compared to the NIST Recognizer Output Voting Error
Reduction (ROVER) [8] system. CN provides a more com-
prehensive result, since the combination is performed on the
hypothesis space level and not on individual hypotheses.

Soon afterwards, the combination of these compact net-
works was explored for multi-decoder hypothesis combina-
tion. The approach known as Confusion Network Combi-
nation (CNC), initially explored on a single signal, has been
used in recent years to study its performance in a multi-
microphone setting [9, 10]. These works explored Channel
Selection and CN weighting complementary techniques, as
an attempt to enhance the performance of CNC in such a
scenario. Nevertheless, they achieved discouraging results
versus signal fusion techniques.

3. BUILDING A CONFUSION NETWORK
OVER MULTIPLE LATTICES

The focus of this work is a reconsideration of the CN extrac-
tion from lattices generated from multiple microphone sig-
nals. Instead of relying on individually compacted versions
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Fig. 1. An example, for a single lattice, and a single segment
(B1-B2), of the selection of links in the boundary-based seg-
ment validation procedure.

(CNs) of the lattices, a method for directly compacting the
multiple lattices is explored here. In our recent work [6], a
multi-microphone agreement method was conceived to estab-
lish the key elements of the final confusion network.

The structure of a confusion network is given by a se-
quence of a limited number of clusters or confusion sets. A
confusion set is characterized by a number of candidate words
(or the silence unit), each one with its posterior probability.
The sequentiality of the sets defines the possible sequence of
words in the resulting hypothesis space. One can say that
each of the confusion sets represents a segment in time, and
that the number of candidates in a set represents the degree of
confusion in the corresponding hypothesis sub-space.

Both, ordering and temporal information are encoded in
the lattices. The investigated method, MMCN, assumes that
there is an agreement, among the different lattices, of the tem-
poral information associated to relevant words. It must be
noticed that this technique operates on time synchronized lat-
tices.

Additionally, acoustic and linguistic information encoded
in the lattices is unified in the word posterior probability, com-
puted over each link l in the lattice. The posterior is the ratio
of the probability of all complete paths that pass through the
link l over the probability of all complete paths in the lattice
Λ, i.e.,

P (l|Λ) =

∑
C∈Λ,l⊃C P (C|Λ)∑

C∈Λ P (C|Λ)
(3)

where C ∈ Λ means that C is a complete path in the lattice Λ,
and l ⊃ C indicates that the complete path C passes through
the link l. The word posterior probability can be computed
using a forward-backward algorithm.

The technique exploits the information within the lattices



to derive features, such as word time boundaries, for extract-
ing a coherent hypothesis space represented as a CN. The co-
herence of the information is used both for identifying poten-
tial segments that will form the resulting CN, and for validat-
ing these segments and its candidate words.

3.1. Inter-Microphone Boundary Agreement
In the standard CN extraction, links with a very low posterior
probability are discarded at an initial stage to avoid detrimen-
tal effects on the final alignment. We keep the entire structure
of the lattice for the extraction of the final CN, but at the initial
step of the process we also follow a similar pruning strategy.
With this procedure, we expect coherent temporal informa-
tion of the relevant words is kept. A cumulative sequence of
the link boundaries of all microphones is computed, and then
the predominant boundaries are selected. These boundaries
are processed in the next stage.

3.2. Intra/Inter Microphone Score Estimation
The previously estimated boundaries mark segments of in-
terest, to be accepted or discarded based on the analysis of
the word candidates and their global posterior scores. The
starting point of this step concerns the selection of l word
candidates that are present within the segment under analy-
sis. A certain tolerance threshold ∆ around the boundaries
is allowed. Then, for each pair of boundaries (Bi, Bi+1), the
posterior probabilities for the final network are estimated in
two steps. First, for each microphone j, an intra-microphone
computation of the posterior scores C is achieved through an
accumulation of posteriors, on a per word basis:

C ([Wlij , Bi, Bi+1]) =X
[w;τ,t]:

[Bi−∆≤τ≤Bi+∆],
[Bi+1−∆≤t≤Bi+1+∆]

P
“
[Wlij , τ, t] |xT1 (j)

”
(4)

where P
(
[Wlij , τ, t] |xT

1 (j)
)

corresponds to the posterior
probability of the link characterized by the word Wlij given
the observation sequence xT

1 (j) related to the lattice. Then,
the global posterior is computed as the average of the esti-
mated probabilities for all the microphones.

A posterior probability is estimated also for the Null or
Silence, as the complement of the sum of all candidates poste-
rior probabilities. The rejection or acceptance of a segment is
subject to the dominance of the Null, determined by a thresh-
old. If a segment is rejected, the search is expanded to a new
segment whose starting boundary is the same as the rejected
one, and its end boundary is the next available boundary.

Figure 1 depicts an example of the selection of the links
within a segment under analysis (the segment starting at B1
and ending at B2). The selected links are shown in bold. For
each of the words in these links, posterior probabilities are
then going to be estimated from the scores present in the mul-
tiple lattices.

As highlighted in [6], no alignment is involved in MMCN.
For this reason, the application of this method is independent
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Fig. 2. DIRHA - Living-room. The microphones used in the
experiments appear in the figure as black circles.

of the order in which lattices are combined. This property
differentiates MMCN from CNC and ROVER, and is partic-
ularly important when a large number of sensors is available.

4. EXPERIMENTAL SETUP

The evaluation task is distant speech recognition in a multi-
microphone setting. The impact of varying the number of mi-
crophones in the hypothesis combination was measured. The
hypothesis from the resulting network was evaluated using the
standard error metrics for ASR, the word error rate (WER).

4.1. Corpora
The language of the data used in the experiments was Ital-
ian. Datasets were simulated using real impulse responses es-
timated for a large set of microphone-speaker position pairs.
This data is part of the DIRHA corpus, whose details can be
found in [11] or on the referred project website. The selec-
tion of source position/orientation was performed randomly.
No overlap between development and test sets holds as for
utterances spoken by a speaker at a certain location. The de-
velopment set (devset) was composed of 61 phrases, spoken
by 27 speakers at 43 position/orientations. In the test set there
were 2245 phrases in total, spoken by 30 speakers, at 74 po-
sition/orientations. In both sets the positions of the speakers
were located within a single room, i.e., the living-room. The
room was characterized by an average T60 of 0.7 seconds.
All the phrases were of the type “read commands”. A total
of 15 synchronized microphones were available in the room
under study; 6 on the ceiling (LAx) and 9 on the walls (L1x,
L2x, L3x, L4x) (see Figure 2).

4.2. Speech Recognition
The speech recognition system used in this work was built
on the HTK toolkit [12]. A standard front-end processing
was employed, with a pre-emphasis step and a feature vec-
tor composed of 12 Mel Frequency Cepstral Coefficients plus
the energy, and their first and second derivatives. Mean and
energy normalization were applied. Various pruning condi-
tions were explored at experimental level. Here we contrast



the results of applying beam-search with a beam of 100 and
no beam, a more computational demanding setting.

A set of 27 phonemes was selected. Acoustic context-
independent phone units, modeled with three states and 32
Gaussian mixtures per state, were trained. APASCI database
[13] was contaminated [14], and this version was used to train
the acoustic models. This database includes 20 phonetically
rich sentences spoken by 164 speakers.

The language model was a bigram, trained on a mixture of
read and spontaneous commands, collected under the DIRHA
project. The size of the dictionary was of 380 words. Lan-
guage model scale(s) and word insertion penalty(p) were op-
timized in the devset, using only one microphone per each
microphone group (e.g., mic LA6 in the group LAx). A sin-
gle combination of parameters (s=11, p=16) was then used,
for all the microphones in the test set.

4.3. Combination Techniques
MMCN is compared to signal and hypothesis combination
techniques. Beamformed (BF) signals were extracted using
the BeamformIt tool [15]. The results of word level hypoth-
esis combination (ROVER) were derived with SCTK Toolkit
[16]. In order to apply CNC in the given experimental condi-
tions, the SRILM toolkit [17] was used. With the lattice-tool
we obtained CNs from the lattices derived by decoding each
channel, and later CNC was performed using the nbest-lattice
tool. All the CNs were assigned a uniform weight.

5. RESULTS

Table 1 shows the performance of MMCN and other com-
bination techniques, on the dev and test sets. The results of
applying a beam of 100 (b100) and no pruning (None) are
presented. Narrowing this beam would lead to significantly
worse performance. The results of decoding every single dis-
tant microphone (SDM) are also presented for reference pur-
poses. ORACLE displays the results of selecting the channel
with the lowest WER per utterance. For simplicity, three mic-
configurations are presented in the tables, which are denoted
as C5, C10 and C15. The mics composing the configurations
are: C5) L1L-L2R-L3L-L4R-LA6, C10) L1L-L1C-L2L-L2R-L3L-
L3R-L4L-L4R-LA3-LA6, C15) L1L-L1C-L1R-L2L-L2R-L3L-
L3R-L4L-L4R-LA1-LA2-LA3-LA4-LA5-LA6. Concerning
ROVER and CNC, the order of the elements used in the
combination affects the final hypothesis. According to the
number of mics to combine, there would be a large number of
possible permutations to explore (e.g., given 5 mics, there are
120 possible permutations). Due to this reason, in this work,
given N mics, only N permutations were addressed with
ROVER and CNC. Each permutation is created in a cyclic
fashion, starting at element k, with k = 1..N . The average
performance of these permutations is reported in the Table.

Experimental results show that hypothesis combination
approaches achieve better performance than SDM and BF, as

Table 1. WER results on Development(Dev) and Test sets
Dev Test

Mic b100 None b100 None

SDM

L1L 11.41 11.41 14.86 14.33
L1C 17.11 16.11 15.07 14.55
L1R 16.11 16.11 14.62 14.19
L2L 9.40 9.4 14.66 13.84
L2R 11.07 11.07 14.32 13.57
L3L 6.38 6.38 14.68 14.05
L3R 10.74 10.07 14.58 14.12
L4L 16.78 16.44 16.52 15.88
L4R 12.08 12.08 17.42 16.63
LA1 17.45 17.45 16.22 15.62
LA2 15.44 15.44 16.34 15.46
LA3 19.46 18.46 15.14 14.49
LA4 17.45 17.45 16.24 15.73
LA5 14.77 13.76 15.70 15.05
LA6 12.42 12.42 15.55 14.96

ORACLE 2.35 2.35 4.73 4.51

BF
C5 10.74 10.74 16.44 15.38
C10 10.07 10.07 15.21 14.23
C15 10.40 10.40 15.47 14.07

ROVER
C5 7.38 7.38 12.69 12.20
C10 8.66 8.69 12.21 11.76
C15 9.08 8.99 12.38 11.93

CNC
C5 8.05 8.05 12.18 11.82
C10 8.92 9.26 11.87 11.50
C15 9.37 9.44 11.99 11.57

MMCN C5 7.72 7.72 12.76 12.22
C10 9.73 9.40 12.42 12.20
C15 9.40 9.40 12.60 12.26

expected. Furthermore, with the optimal set of parameters,
MMCN achieves a performance comparable to CNC.

In order to evidence the effect of the order in which
the mics are incorporated into a combination, we explored
other configurations, such as one based on ranking mic-group
WERs, i.e.: X6) the mics on the ceiling (6 mics.), then X10)
those in X6 plus one mic of each wall group (10 mics.), and
finally X15) adding the remaining wall sensors (15 mics.).
Note that in this case only one permutation is analyzed for
each configuration. With CNC, in the case of X15, its per-
formance is different from the one reported in C15 Table 1.
Starting with lattices that achieved the highest SDM WER,
the balanced inclusion of mics leads to a reduction of the
WER. In Figure 3, it can be observed that, for most of the ex-
plored mic-configurations, now MMCN shows a lower WER
than CNC. This illustrates the impact of the arrangement of
mics on CNC, which is not an issue for MMCN.

From the different setups evaluated, it can be observed
that the number of mics is not the unique factor affecting hy-
pothesis combination approaches; the quality of the source
lattices, an information not available a priori, is also relevant.
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Although there is no WER reduction with MMCN, its perfor-
mance is invariable independently of the arrangement of the
mics. This is an advantage over CNC in a multi-microphone
scenario where an analysis of a proper ordering is hard to
achieve. Note that the algorithms in MMCN are just at start-
ing level, which leaves a window for improvement concerning
the identification of optimal parameters.

6. CONCLUSIONS AND FUTURE WORK

A new method of multi-lattice agreement for hypothesis com-
bination was presented and evaluated. Given the large num-
ber of microphones available in the research scenario, it be-
came evident the advantage of applying a method which ob-
tains consistent results independently of the arrangement of
the sensors. With the optimal operation parameters, MMCN
achieves comparable results to those of the state of the art.
With the support of more efficient algorithms for the extrac-
tion of key components in the MMCN approach, experiments
suggest that an improvement could be achieved. The tech-
nique has already been validated on real data, confirming the
performance outlined in this work.
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