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ABSTRACT
In video images, apparent motions can be computed using
optical flow estimation. However, estimation of the depth
directional velocity is difficult using only a single viewpoint.
Scene flows (SF) are three-dimensional (3D) vector fields
with apparent motion and a depth directional velocity field,
which are computed from stereo video. The 3D motion of
objects and a camera can be estimated using SF, thus it is
used for obstacle detection and self-localization. SF estima-
tion methods require the numerical computation of nonlinear
equations to prevent over-smoothing due to the regularization
of SF. Since the numerical stability depends on the image and
regularizer weights, it is impossible to determine appropriate
values for the weights. Thus, we propose a method that is
independent of the images and weights, which simplifies pre-
vious methods and derives the numerical stability conditions,
thereby facilitating the estimation of suitable weights. We
also evaluated the performance of the proposed method.

Index Terms— Disparity, numerical stability, scene flow,
stereo, variational method

1. INTRODUCTION

Research into motion estimation in video has flourished since
the 1980s, particularly in the area of optical flow estimation
[1, 2]. It is possible to estimate an object’s apparent motion,
but it is difficult to estimate the three-dimensional (3D) mo-
tion of objects using optical flow alone because it lacks depth
directional information. Therefore, it is necessary to combine
optical flow with a method that can restore depth when esti-
mating 3D motion.

The methods used for restoring depth in images can be di-
vided into two main categories. The first method uses range
sensors based on laser and infrared pattern irradiation, and the
second method uses stereo cameras. The first method has very
high restoration accuracy in favorable conditions, such as still
objects located in indoor environments, but it is not suitable
for moving objects and the cameras required are more ex-
pensive than ordinary cameras. The stereo method estimates

depth using the disparity and distance between cameras.

3D motion estimation methods that extend optical flow es-
timation methods can be categorized into two types. The first
method is RGB-D flow estimation [3], which uses laser sen-
sors to obtain color images. The second is scene flow estima-
tion [4, 5], which combines optical flow estimation and stereo
vision using a variational method developed in the 1990s [4].
Scene flow is a 3D vector field, which comprises optical flow
and the time variation in the disparity field of stereo images
[4, 5]. Scene flow can be converted geometrically into 3D
motions on object surfaces using disparities and the distance
between cameras. Scene flow is applicable to various fields,
such as obstacle detection and action analysis. Furthermore,
the estimation of the self-motion of a camera based on scene
flow may potentially be applied to the self-localization of au-
tomated guided robots and vehicles. The application of scene
flow to self-driving vehicles has been studied already [5, 6].

The theory of scene flow estimation is based on a vari-
ational method. Scene flow is determined from constraints
based on the brightness invariance in the corresponding pixels
between frames and stereo. However, unique solutions cannot
be determined in the same brightness area based on the con-
straints alone. Thus, scene flow regularizers are employed.
Regularizers based on Nagel method and total variation (TV)
are used to prevent scene flow over-smoothing by controlling
the strength of smoothing based on the norm of the bright-
ness gradient and the flow vector of each pixel, respectively,
where these regularizers are referred to as image- and flow-
driven. It is difficult to obtain analytical solutions to the Euler-
Lagrange (EL) equations derived from minimization prob-
lems that comprise these regularizers and constraints, thus nu-
merical solutions are often obtained by iteration [7].

Two problems affect numerical computation using pre-
vious methods [5]. First, large nonlinear iterations are re-
quired with a TV regularizer. Thus, it is desirable to reduce
the computational cost as much as possible while prevent-
ing over-smoothing. Second, the numerical stability has not
been addressed sufficiently but it depends on the regularizer
weights and brightness, where iteration does not converge in



all cases. Therefore, it is difficult to identify suitable regular-
izer weights. Resolving these problems will allow iterations
to converge in a reliable manner and facilitate the determina-
tion of suitable weights. This solution will facilitate hardware
implementations for scene flow estimation.

In this study, we reconsider these previous complex and
nonlinear methods, and we simplify the algorithm. Using
stability analysis, we propose a method where the numer-
ical stability is independent of the regularizer weights and
brightness. Furthermore, we show that the proposed algo-
rithm can prevent over-smoothing, which is similar to image-
and flow-driven regularizers. Moreover, our method facili-
tates the identification of suitable regularizer weights.

2. VARIATIONAL PROBLEM FOR SCENE FLOW

We assume that stereo cameras have the same specification
and that they are rectified and synchronized. Thus, the ver-
tical disparities of the stereo images are zero. Furthermore,
we assume that the disparity field has already been estimated
for each frame. Under these assumptions, we construct the
energy minimization problem for scene flow estimation using
the brightness consistency and a scene flow regularizer. The
outline of the minimization problem framework is based on a
previously reported method [5].

2.1. Constraints for Stereo Video

Let L(x, t) be the brightness value of the left image at pixel
x = (x, y)⊤ ∈ Ω ⊂ R2 and time t, where Ω is the image
domain. If the brightness values of objects are invariant with
a short time difference ∆t,

L(x, t) = L(x+ u(x, t)∆t, t+∆t) (1)

is satisfied for any pixel using the apparent motion (flow vec-
tor) u(x, t) = (u(x, t), v(x, t))⊤. Equation (1) is called an
optical flow constraint [1]. The concept described by (1) is
illustrated in Figure 1 (a).

Similarly, for the brightness value R(x, t) of the right im-
age, if there is a disparity d(x, t) = (d(x, t), 0)⊤,

R(x+ d(x, t), t)

=R(x+ d(x, t) + (u(x, t) + p(x, t))∆t, t+∆t)
(2)

is satisfied by using u(x, t) and the disparity change p(x, t) =
(p(x, t), 0)⊤. The concept described by (2) is illustrated in
Figure 1 (b). Furthermore, if the brightness values of the
corresponding stereo pixels are the same at time t+∆t,

L(x+ u(x, t)∆t, t+∆t)

=R(x+ d(x, t) + (u(x, t) + p(x, t))∆t, t+∆t)
(3)

is satisfied. In this study, we assume ∆t = 1 for simplicity.
Scene flow is the paired apparent motion (optical flow) u of
the left image and the disparity change p. We denote v =
(u⊤, p)⊤ = (u, v, p)⊤.

(a) Motion of pixel in the left image
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(b) Motion of pixel in the right image

Fig. 1: Pixel correspondence of stereo. The disparity increases
over time as the square moves downward and to the left.

2.2. Energy minimization using a variational method

We assume that the scene flow and image are second-order
differentiable. Denoting E2

LF (v,x, t), E2
RF (v,x, t) and

E2
DF (v,x, t) as the squared errors of both sides of (1) to (3),

respectively, we define the data term as

ED(v,x, t) = E2
LF + c(x, t)

(
E2

RF + E2
DF

)
, (4)

where we abbreviate (v,x, t). The coefficient c(x, t) is 0 if
d(x, t) is undefined because of occlusion and other factors,
and 1 otherwise. c(x, t) controls whether it is necessary to
apply the pixel correspondence to the right image.

Since (4) is ill-posed, an additional regularizer ES(v,x, t)
of v is required. The energy functional is defined as

J(v, t) =

∫
Ω

(ED(v,x, t) + ES(v,x, t)) dx (5)

in [5]. In the present study, the regularizer is defined by

ES(v,x, t) = λ
(
|∇u|2 + |∇v|2

)
+ γ|∇p|2, (6)

where the positive real λ and γ are the regularizer weights

and ∇ =
(

∂
∂x ,

∂
∂y

)⊤
. For u, v, and p, we abbreviate (x, t).

Similarly, we abbreviate L(x, t) to L and R(x+d, t) to R to
avoid misunderstandings.

The solution to the minimization problem described by
(5) is the solution of the EL equations

λ∇2u− LxELF − cRxERF = 0 (7)

λ∇2v − LyELF − cRyERF = 0 (8)

γ∇2p− cRx(EDF + ERF ) = 0 (9)

for each (x, t) [5], where ∇2 =
(

∂2

∂x2 + ∂2

∂y2

)
and each sub-

script x and y of L and R denotes partial space differentiation.

2.3. Pyramid Transform and Image Warping

To compute the EL equations with coarse-to-fine, it is usually
necessary to develop a complex scheme, which is constructed
using a Taylor expansion and a fixed point method for the
nonlinear term (4) [5, 8]. By contrast, we simplify the scheme
by focusing on the pyramid transform and image warping.



In the algorithm, the pyramid transform generates low res-
olution stereo images, which decreases |v(x, t)| at the same
rate as the resolution. Therefore, we assume that |v(x, t)|
is sufficiently small. Using scene flows estimated at lower
resolution, image warping approximates the frame at t + 1
to the frame at t in an iterative manner. More specifically, it
computes the scene flows between the left images L(x, t) and
the warped Lwarp := L(x + u, t + 1), and the right images
R(x+d, t) and the warped Rwarp := R(x+d+u+p, t+1) in
the condition with a zero vector field. It is possible to increase
the estimation accuracy by adding each scene flow estimated
between the warped images. After iterating image warping
at a lower resolution, image warping is computed at a higher
resolution in a similar manner by upsampling the lower res-
olution scene flow. Thus, the scene flow is estimated at the
original resolution. The concept of this algorithm is formal-
ized in Algorithm 1.

2.4. EL equations

For small values of v, we construct an energy functional using
the first-order approximation of the Taylor expansion of (4),

ED ≃
(
u⊤∇L+ Lt

)2
+ c

(
u⊤∇R+Rxp+Rt

)2
+ c

(
u⊤∇D +Rxp+Dt

)2
,

(10)

where Lt and Rt are time derivatives approximated by frame
subtractions, Dt is the subtraction of stereo images at frame
t+ 1, and D = R− L. Using the symmetric matrix

S2 = S0(L) + c (S0(R) + S0(D)) , (11)

where S0(f) = ∇f(∇f)⊤ is the local structure tensor of f
and positive semi-definite, we define

S =

(
S2 s
s⊤ 2cR2

x

)
, where s = 2cRx∇(R+D), (12)

and the constant terms

b1 = Lt∇L+ c (Rt∇R+Dt∇D) , b2 = cRx(Rt +Dt).
(13)

Using (12) and (13), the EL equations are simplified as

∇2

(
λu
γp

)
− S

(
u
p

)
−
(
b1
b2

)
= 0. (14)

3. ITERATIVE COMPUTATION AND ITS STABILITY

Next, we derive the numerical stability of the iteration of (14).
We describe the computation of vtmp for the innermost itera-
tion in Algorithm 1 and abbreviate vtmp to v. Using a semi-
implicit scheme [9] and successive over-relaxation method
(SOR), we define the recurrence formula of (14) for u as

u(k+1) = u(k) +
ω1

4
∇̃2u(k) − ω1

4λ

(
S2u

(k+1) + ps+ b1

)
,

(15)

Algorithm 1: Scene flow estimation using multi-
resolution image warping.

Data: L, R, d, λ, γ, maximum pyramid level lmax,
warp and successive over-relaxation (SOR)
iterations wmax, kmax, and mmax

Result: scene flow v
1 for l = 0 to lmax do
2 build Gaussian pyramids L[l], R[l], and d[l];

3 for l := lmax to 0 do
4 for w := 1 to wmax do
5 Using d[l] and v[l], compute Lwarp and Rwarp;
6 vtmp := {0}∀x;
7 for k := 1,m := 1 to kmax,mmax do
8 iterate vtmp using L[l], Lwarp, R[l], Rwarp;

9 v[l] := v[l] + vtmp

10 generate v[l−1] by upsampling v[l];

11 v := v[0];

where the superscript (k) denotes the iteration count of u,
ω1 ∈ (0, 2) is an acceleration factor, and ∇̃2 is the approxima-
tion of the Laplacian using second-order central differences 1.
While iterating u, let p be constant. Simplifying (15),

u(k+1) = A
(
G1u

(k) − ω1

4λ
(ps+ b1)

)
(16)

A =
(
I2 +

ω1

4λ
S2

)−1

, G1 = 1 +
ω1

4
∇̃2, (17)

where I2 is the identity matrix of size 2. Since (11) is positive
semi-definite, the eigenvalue of A does not exceed 1 without
depending on ω1 > 0 and λ > 0. Therefore, the stability
condition of (16) is that the spectral radius of the coefficient
matrix that comprises G1 does not exceed 1. Therefore, the
stability condition of u is∣∣∣1 + ω1

4
(−4− 4)

∣∣∣ = |1− 2ω1| ≤ 1, (18)

thus u is stable if ω1 ≤ 1.
Similarly, we define the recurrence formula of p as

p(m+1) = G2p
(m)−ω2

4γ

(
s⊤u+ 2cR2

xp
(m+1) + b2

)
, (19)

where, as with u, G2 = 1+ ω2

4 ∇̃2, (m) is the iteration count
for p, and ω2 ∈ (0, 2) is an acceleration factor for the SOR of
p. While iterating p, let u be constant. By simplification,

p(m+1) =
1

1 +
cω2R2

x

2γ

(
G2p

(m) − ω2

4γ

(
s⊤u+ b2

))
. (20)

In the same manner as u, p is stable if ω2 ≤ 1.
1The number of diagonal elements in the coefficient matrix is 4, thus we

divide the right-hand side of (15) by 4, excluding the first term.



(a) Optical flow u

(b) Color plot of u

(c) p > 0

Fig. 2: Scene flow of the 11th frame of sequence 1. The cam-
era moves forward and the leading vehicle recedes.

(a) Optical flow u

(b) Color plot of u

(c) p > 0

Fig. 3: Scene flow in the 220nd frame of sequence 2. The left
oncoming vehicle is turning right.

Fig. 4: Color illustration of the direction and speed of u(x, t).

Using the semi-implicit scheme, the proposed method can
prevent over-smoothing by multiplying the diffusion term by
the inverse matrix of the coefficient matrix that comprises S2.
Therefore, the term that includes S2 has the property of an
image-driven regularizer.

The partial space derivative at each pixel is average of
that for the previous and the next frames. The first-order
partial derivative is approximated by a Scharr operator [10].
The frame and stereo subtractions are computed from images,
which are smoothed by a Gaussian function with a standard
deviation of 0.8. To accelerate the iteration process, we use
parallel computation with the over-relaxed red-black Gauss-
Seidel method [11] for u(k) and p(m).

4. EXPERIMENTS AND DISCUSSION

In these experiments, the computational conditions were the
same as the values reported in [5] to facilitate comparisons,
i.e., λ = 0.06, γ = 0.6, kmax = mmax = 3, wmax = 2,
and lmax = 4. The initial and boundary conditions for v were
a zero vector field and homogeneous Neumann conditions,
respectively. The images used were EISATS set 2, sequences

1 and 2 [12]. The computational environment comprised a
system with an Intel Core i7-3770 3.4 GHz processor, Visual
C++ 2013, and OpenCV 2.4.8. The frame rate of the proposed
method is 5 frames per second (fps) for 640×480 pixles. It is
almost 4 times faster than [5], in which the frame rate is 5 fps
for 320×240 pixels.

Figures 2 and 3 show the results obtained using the pro-
posed method. We used the color representation [2] shown in
Figure 4 for the dense drawing of u. The regions where p > 0
correspond to the approaching objects. In the region with the
leading vehicle in Figure 2, the scene flow was not estimated
accurately because of the transparency of the rear window.
For these images, λ and γ, the iteration diverged if ω1 ≥ 2 or
ω2 ≥ 2. This was because the spectral radius ρ(A) declined
to less than 1, depending on the images and weights, and (18)
was relaxed. As the result, the iteration was stable if ω1 ≤ 1
and ω2 ≤ 1, in theory, and it was possible to accelerate the
process using the SOR method.

We evaluated the errors between the estimated u(x, t) and
ground truth u∗(x, t) at each pixel. The errors were the mean
endpoint error (EE) [2] and

1

|Ω|
∑
x∈Ω

|u− u∗| (21)

and the mean spatiotemporal angle error (SAE) [2]

1

|Ω|
∑
x∈Ω

arccos

(
u⊤u∗ + 1√

|u|2 + 1
√

|u∗|2 + 1

)
. (22)

In these cases, the pixels where u∗(x, t) did not exist were ex-
cluded. Figure 5 shows the evaluations for the proposed and
previous methods [5]. The computational conditions used for
the previous method were the same as the described above,
i.e., the optimized values reported in [5], except the ’inner
iteration’ (which does not exist in our method) was 15. How-
ever, the iteration of the previous method diverged with the
condition ω = 1.99, thus we set ω = 1. Compared with the
previous method, the proposed method had better accuracy in
terms of the average EE and SAE. Therefore, the proposed
method has numerical stability and greater accuracy.

5. CONCLUSION

In this study, we analyzed the numerical stability of scene
flow and verified our proposed method. The proposed method
facilitates the stable computation of any images and regular-
izer weights, and the more accurate estimation of scene flow.
This approach allows the determination of suitable weights.
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