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ABSTRACT

One of the major utilities of biometrics in the context of crime
scene investigation is to identify people. However, in the most
sophisticated cases, criminals may introduce the biometric
samples of innocent individuals in order to evade their own
identities as well as to incriminate the innocent individuals. To
date, even a minute suspect of an anti-forensic threat can po-
tentially jeopardize any forensic investigation to the point that
a potentially vital piece of evidence suddenly becomes pow-
erless in the court of law. In order to remedy this situation,
we propose an anti-forensic resistant likelihood ratio compu-
tation that renders the strength of evidence to a level that is
proportional to the trustworthiness of the trace, such that a
highly credible evidence will bear its full strength of evidence
whilst a highly suspicious trace can have its strength of evi-
dence reduced to naught. Using simulation as well as a spoof
fingerprint database, we show that the existing likelihood ratio
computation is extremely vulnerable to an anti-forensic threat
whereas our proposed computation is robust to it, thereby
striking the balance between the utility and threat of a trace.

Index Terms— Anti-forensic, likelihood ratios, tampered
images, trustworthiness, strength of evidence

1. INTRODUCTION

1.1. Motivation

The trustworthiness of biometric evidence is a major concern
when presenting such evidence in court. As a forensic practi-
tioner, the assessment of likelihood ratio (LR) is the most gen-
uine means to evaluate biometric trace [1]. Anti-forensic tech-
niques are recently so rampant to alter biometric trace that this
becomes a great concern to the forensic and biometric com-
munities. Digital tampering and sensor tampering are the two
main ways used by anti-forensic practitioners. Even though
the LR approach statistically estimates the value of a biometric
sample, performing a LR on a digitally tampered or spoofed
biometric sample will pose a threat on innocent people.

In order to reduce the threat posed by the aforementioned
anti-forensic issues, we are motivated to develop a framework
that determines the strength of the evidence and also show if

All authors are with Department of Computing, University of Surrey,
Guildford, GU2 7XH, Surrey, UK. E-mails: {n.poh, n.niksuki, a.iorliam,
a.ho}@surrey.ac.uk

such a biometric sample is worth presenting as evidence in
court or not.

1.2. Strength of Evidence

Meuwly and Veldhuis [2] proposed that forensic strength of
evidence statements should preferably be likelihood ratios
calculated using relevant data, quantitative measurements and
statistical models in order to overcome the inconclusive cat-
egory of evidence outcome. The calculated results may later
be supported by an expert’s opinion if needed. This is to
ensure that one can use and evaluate all possible evidence col-
lected and present it in court. A large body of literature [3–9]
asserts that likelihood ratio computation is a reliable, scientif-
ically validated, and approved method for evaluating forensic
biometric trace.

Validity and reliability are two virtues that cannot be
overly emphasized in forensic science. Morrison et al. [10]
addressed that one should be able to present the accuracy of
their output results together with how precise their approach
could be. It will be misleading to court if forensic practitioners
only report the latter result without giving a statement con-
cerning the reliability of their result. At the end, it is the judge
who has the ultimate power to admit or reject the presented
evidence based on investigator’s testimony [11].

The main concern in this paper is that if the trace collected
from a crime scene is not original or has been tampered with
in any way, evaluating the calculated result from a trusted like-
lihood ratio framework could be jeopardised. By taking into
consideration the importance of knowing the trustworthiness
of the evidence, we propose an anti-forensic methodology that
can take into account the trustworthiness of piece of biometric
trace. The context of trustworthiness in this paper, we refers
to the ability to place trust on the collected trace and being
assured that the trust shall not be betrayed. Latter we imple-
ment it in the usual likelihood ratio computation framework,
thereby striking the balance between the utility and threat of a
trace proportionately to its level of trustworthiness.

1.3. Questionable Images as Evidence

In general, there are two types of tampered images: (i) digital
tampering; and (ii) spoofed samples. Taking into considera-
tion of a biometric sample, digital tampering refers to a pro-
cess where a trace image is maliciously tampered with in order
to be presented as evidence in the court or to tarnish someones



prestige [12]. Fortunately, very often when a digital image is
tampered with, the act of tampering leaves traces which can
be analysed by a forensic expert [12]. Even though Stamm
et al. [12] showed that such traces could be cancelled using a
suitable dithering noise signal, Giuseppe et al. [13] recently ar-
gued and showed that the dither noise presents a visible distor-
tion in the attacked image. On the other hand, spoofing refers
to any attempt to masquerade as someone else by falsifying the
victim’s data e.g. wearing a 3D mask, using a printed image,
and using artificial materials to replicate a fingerprint to gain
illegitimate access or benefits. Indeed, some literature [14–16]
suggests that current biometric recognition system are vulner-
able to spoofing attacks, thus demonstrating the feasibility of
spoofed samples being introduced into a crime scene. Later in
this paper, we investigate such a scenario in an experimental
setting.

1.4. Our Contributions

Our contribution in this paper is two-fold:
• Proposal of a likelihood ratio framework for anti-forensic

resistant, and

• Empirical validation of the framework using a fingerprint
database under spoofing attack.

1.5. Paper Organisation

This paper is organised as follows: Section 2 gives our
methodology where we explain our proposed anti-forensic
resistant computation. Section 3 shows our experiments,
database used and results. Finally conclusions and future
works are drawn in Section 4.

2. METHODOLOGY

The usual likelihood ratio framework as used in the court of
law is:

LLR(E) = log
p(E|H0)

p(E|H1)

in the logarithmic domain, where E is a piece of evidence and
H0 is the null hypothesis and H1 the alternative hypothesis.
The null hypothesis states that the evidence belong to the sus-
pect whereas the alternative hypothesis is that the evidence
belongs to someone else. Put differently, H0 represents the
prosecution hypothesis whereasH1 represents the defence hy-
pothesis.

However, the log-likelihood term, LLR(E) has no mech-
anism that considers the trustworthiness of the evidence. If
the evidence has been tampered with, than, we would like the
LLR(E) term to reduce to zero so that it does not carry any
strength any more. On the other hand, if the LLR(E) is trust-
worthy, we shall keepLLR(E) to assume its original value. In
other words, we need a trustworthy log-likelihood ratio, just in
case our evidence has been tampered with by an anti-forensic
technique. Intuitively, the anti-forensic resistance LLR should
be of the form of:

LLRtamper
resist (E) ≈ w log

p(E|H0)

p(E|H1)
(1)

where w ∈ [0, 1].
We describe a procedure that can achieve this.
Let P (T = 1|t) be the probability of the trustworthiness T

of the sample given the measurement of potential tampering, t
which is usually a feature vector. In the case of a digital image,
t is deviation from the Benford’s law, which is a probability
distribution that has been widely used to detect tampering in
financial data [17]; and has recently been used to detect digital
tampering of fingerprint images [18]. The feature vector t can
also characterise the liveness of a biometric sample, e.g., local
binary patterns (LBP) [19], so that P (T = 1|t) can be inter-
preted as the probability of a sample being taken from a live
finger rather than spoof materials. In any case, we recognise
that the probability of trustworthiness, P (T = 1|t), is a func-
tion of the tampering measure, t; hence, this can be written as
w(t) ∈ [0, 1].

A tamper-resistant likelihood can then be defined as:

p(E|Hk, T = 1, t) =
1

Zk(w(t))
p(E|Hk)

w(t) (2)

for both prosecution and defence hypotheses, k ∈ {0, 1},
where Zk(w(t)) ensures that the left hand side term is prop-
erly normalized, i.e., Zk(w(t)) =

∫
E
p(E|Hk)

w(t), noting
that this term is a function of the probability of trustworthi-
ness term, w(t), but not of the evidence, E, itself since it is
integrated out of the equation.

Using the likelihood ratio framework, the tamper-resistant
LLR can consequently be written as:

LLRtamper
resist (E) = log

p(E|H0, T = 1, t)

p(E|H1, T = 1, t)

= log

(
(Z0(w(t)))

−1p(E|H0)
w(t)

(Z1(w(t)))
−1p(E|H1)w(t)

)
(3)

= w(t) log

(
p(E|H0)

p(E|H1)

)
︸ ︷︷ ︸

evidence-dependent term

− log
Z0(w(t))

Z1(w(t))︸ ︷︷ ︸
normalizing term

= w(t)LLR(E) + ε(w(t))

≈ w(t)LLR(E) (4)

where in (3), we have plugged in the tamper-resistant like-
lihood term as defined in (2). By rewriting the equation as
a function of the conventional LLR(E), we observe that
the tamper-resistant LLR is made up of two terms, i.e., an
evidence-based log-ratio term and a normalizing log-ratio
term that is independent of the evidence. While the first term
rescale the conventional LLR(E) by w(t), the second term,
ε(w(t)) ≡ − log Z0(w(t))

Z1(w(t)) introduces the bias required in order
to achieve equality. In practice, the second term tends to can-
cel out each other, causing it to assume a significantly small
value that is close to zero, i.e., ε(w(t)) ≈ 0. Put differently,
the absolute value evidence-dependent term is many orders
larger than that of the normalizing term:∣∣∣∣∣log

(
p(E|H0)

p(E|H1)

)w(t)
∣∣∣∣∣�

∣∣∣∣log Z0(w(t))

Z1(w(t))

∣∣∣∣ .
Following this rationale, by dropping ε(w(t)), we obtain the
intuition as specified by (1). Despite being a less important



term, it should not be neglected because the absolute value of
LLR is often used to interpret the strength of a piece of evi-
dence. In summary, although we started with an intuition, by
using probability axioms, we have derived a tamper-resistant
LLR that is a shifted and scaled version of the conventional
LLR, thus introducing minimal modification to a widely ac-
cepted practice. Since the modification is easy to understand,
it is more likely to be accepted and adopted.

2.1. Assessing the Probability of Trustworthiness using
the Bayes Theorem

The key to obtaining a resistant-tampering likelihood ratio is
to evaluate w(t) = P (T = 1|t). This term can be calculated
using the Bayes theorem [20] or through a discriminant func-
tion such as logistic regression that gives probabilistic output.
Here, we shall present the first method; and the readers are
referred to [20] for the second method.

From the Bayes theorem, the probability of Trustworthi-
ness is given by:

P (T = 1|t) = P (T )p(t|T = 1)∑
T ′∈{0,1} P (T

′)p(t|T ′)

where p(t|T ) is the likelihood of evidence of tampering given
that its state of tampering, T , which can be either true or false.
This is because a sample has either been tampered with or it
has not. P (T ) is the prior probability of tampering. Impor-
tantly, p(t|T ) is obtained from a training database of tampered
and untampered samples whereas the prior P (T ) is manually
set for each and every case work.

The value of P (T ) depends on a number of factors. When
solving a case work, if there is a reason to be believe that
anti-forensic could have taken place, then, it is sensible to
set the prior probability of tampering P (T ) appropriately. On
the other hand, if an evidence is considered 100% trustwor-
thy, one can simply set P (T ) = 1 so that the tamper-resistant
LLR is exactly the same as the conventional LLR(E). In sum-
mary, P (T ) offers a flexible way of specifying trustworthiness
that reflects an investigator’s belief. This mechanism effec-
tively renders the conventional LLR resistant to antiforensic
attempts.

2.2. Analysis of the weighted LLR

Let us now analyse the range of values assumed by a tamper-
resistant LLR as in (4). For this purpose, we shall focus on
the evidence-dependent log-ratio term and drop the log-ratio
normalizing term (which a very small value).

LLRtamper
resist (E) ≈ w(t) log

p(E|H0)

p(E|H1)︸ ︷︷ ︸
LLR(E)

If the normal LLR(E) is bounded in [−b, b], the tamper-
resistant LLR will be bounded in [−bw(t), bw(t)]. Since w(t)
takes a value between zero and one, the tamper-resistant LLR
will be at most as large as [−b, b] but as small as 0. Therefore,
w(t) directly controls the strength of evidence.
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Fig. 1: A demonstration of likelihoods p(E|Hk, T =
1)w for k ∈ {0, 1} with different weightings of w ∈
{1, 0.9, 0.75, 0.5, 0.25, 0.1} from the thinnest to the thickest
lines.

We now illustrate this with an example. We first plot the
likelihood of evidence given Hk, p(E|Hk), where the evi-
dence is a matching score, for the prosecution hypothesis H0

(k = 0); as well as the defence hypothesis H1 (k = 1). Be-
cause the likelihoods have been modelled on original, non-
tampered data, we are really estimating p(E|Hk, T = 1) to
write more explicitly. Figure 1 plots the pair of likelihood con-
trolled by w which is set to different values between zero and
one. As can be observed, with decreasing w, the likelihoods

1
Zk(w)p(E|Hk|T = 1)w for both classes, k ∈ {0, 1} also be-
come smaller and smaller. This should lead to smaller strength
of evidence in terms of log-likelihood ratio. In the experimen-
tal section, we will let w to be controlled by the probability of
a live, non-tampered sample.

3. EXPERIMENTS

3.1. Database

In order to study the potential effect of tampering, we have
chosen to use a biometric database containing spoof samples.
This enables us quantify objective how strong the proposed
anti-forensic resistant framework can withstand tampering.
Specifically, we wish to examine whether or not the strength
of evidence for tampered biometric samples can be reduced by
our proposed method with respect to the conventional method
of likelihood ratio computation.

To this end, we have chosen to use the LivDet 2011 [15]
database. An interesting aspect of this database is that it con-
tains live fingerprint images of different quality levels as well
as fake fingerprint images due to the use of different fabrica-
tion materials.

In addition, with the database, we can also measure the
strengh of evidence under zero-effort non-match comparison
which is essential to estimate p(E|H1, T = 0).

The LivDET 2011 database contains 8000 samples. The
most important key statistics relevant for our experiments are:

• 144 unique fingers containing both live and spoof samples



−5 0 5 10 15

EcoFlex

Gelatine

Latex

Silgum

WoodGlue

Zero

Genuine

LLR(E)

(a) Conventional LLR

−5 0 5 10

EcoFlex

Gelatine

Latex

Silgum

WoodGlue

Zero

Genuine

AF−resistant LLR(E)

(b) Anti-forensic LLR

−10 −5 0 5 10 15 20

EcoFlex

Gelatine

Latex

Silgum

WoodGlue

Zero

Genuine

AF−resistant LLR(E)

(c) Expert opinion-weighted w

−5 0 5 10 15

EcoFlex

Gelatine

Latex

Silgum

WoodGlue

Zero

Genuine

AF−resistant LLR(E)

(d) Oracle

Fig. 2: A boxplot of the (a) conventional LLR(E), (b) the proposed anti-forensic resistant LLR(E), (c) the expert opinion
combined with the inferred posterior probability of untampered images, and with (d) the ground-truth about the nature of
tampering.

• 256 unique fingers containing only live samples

• 4000 fingerprints acquired using the Biometrika sensor,
and another 4000 acquired using the Italdata sensor.

• 800 fake fingerprint samples for each of the five fabrication
materials

We prepared the data by making an exhaustive pair-wise
comparison of all the available 8,000 samples. For each of
the 8,000 samples, we also estimated their liveness measure
based on the Local Binary Patterns (LBP) features as described
in [19]. The LBP features have been shown to outperform
other competing liveness measures based on pores detection,
Curvelet, Power spectrum, Wavelet energy signature evaluated
on the LivDet 2011 fingerprint database. We modelled the
probability of liveliness given the LBP features using logistic
regression [20].

The data set is divided into two equal partitions, namely
a training set and a test set. The training set is used for es-
timating any model parameters. In this case, the models are
p(E|Hk) for both k = {0, 1}, and also w(t) ≡ P (T =
1|t). The test set is used uniquely to assess the properties of
LLR(E) and its tamper-resistant LLR(E).

Each of the two sets is generated by a gallery of 72 distinct
fingers. This means that the training and test sets are disjoint;
hence, completely independent of each other. In each set, there
are 720 genuine (match) attempts and 460800 zero-effort im-
postor attempts; whereas the spoof attempts are further divided
into five sets depending on the fabrication materials, namely,
Ecoflex, Wood glue, Silgum, Latex, and Gelatine. The num-
ber of these spoof attempts are {1000, 300, 350, 300, 300}, re-
spectively. Each attempt consists of two observations: the bio-
metric matcher output (E) and the liveness measure t of the
query sample.

3.2. Results

The first experiment compares the conventional likelihood
computation with its anti-forensic resistant version in terms
of LLR. The comparative result is visualised using boxplots
as shown in Figure 2, which shows the median, the first and
third quartiles, as well as the fifth and 95-th percentiles of
the data. Figures 2(a) and (b) compare the range of values
according to the usual LLR with that of the proposed anti-

forensic resistant LLR. We observe that the interquartile range
of the conventional LLR, that is the range between the first and
third quartile, is very similar to the genuine (match) scores.
This implies that the spoof samples due to the five fabrica-
tion materials, that are, Ecoflex, Wood glue, Silgum, Latex,
and Gelatine would generate LLR that is very similar to that
generated by genuine comparison. With antiforensic LLR,
Figure 2(b), the dispersion of innocent evidence in LLR still
overlaps into the dispersion of a guilty evidence. Although
this could still lead to misinterpretation of evidence, the risk
of this is significantly reduced, as shown by the boxplot of
the genuine sample and those of the spoofed materials, the
dispersion of which is comparatively narrower.

In the second set of experiments as shown in Figure 2(c),
we created an additional simulation where we allow the in-
vestigator to weigh in his/her opinion in order to question the
validity of the evidence’s trustworthiness. Therefore, rather
than relying on a fully automatic liveness detector, the inves-
tigator is allowed to introduce a prior of P (T = 1) to some
values. In this case, we set P (T = 1) = 0.8 for all the live
samples and P (T = 1) = 0.2 for the spoof samples made
with any of the five fabrication materials. We also conducted a
third set of experiments which is called the “oracle” where we
set P (T = 1) = 1 for all the live samples and P (T = 1) = 0
for the spoof samples. This enables us to see the best possi-
ble that can be possibly achieved. The results are shown in
Figure 2(d).

As can be observed, the interquartile range of the spoofed
material with the expert’s opinion become much more nar-
rower in Figure 2(c). This shows that when the investigator
exerts his/her opinion of trustworthiness to the proposed anti-
forensic LLR, a much more accurate decision can be attained.
Of course, if the opinion of the investigator turns out to be
wrong, such an exercise will be counter productive, but can
still do no worse than the conventional LLR.

The above experiments demonstrates the ability of the pro-
posed anti-forensic computation to use the expert’s opinion in
weighting the uncertainty of the evidence’s origin as discussed
in Section 2.1. Furthermore, with the availability of additional
prior knowledge about the integrity of the evidence (as repre-
sented by P (T )), the resultant strength of evidence is signifi-
cantly reduced to a non-threatening level.



4. CONCLUSION

In this paper, we proposed an anti-forensic-resistant likelihood
ratio computation that explicitly considers the trustworthiness
of the evidence. We showed that the strength of evidence can
be reduced to a non-threatening level when the evidence has
been tampered with. Our empirical investigation shows that
the strength of evidence due to spoofing can be significantly
reduced in terms of the interquartile range of LLR, leaving
the LLR of untampered samples, both for the match and non-
match comparisons, to be roughly the same. The method can
thus seamlessly be integrated with the widely accepted like-
lihood ratio computation without significantly modification.
The proposed anti-forensic resistant computation also allows
the expert’s opinion to weigh in his prior belief about the trust-
worthiness of a piece of evidence by simply setting the prior
of P (T = 1). Possible future research directions include: (1)
applying the proposed anti-forensic resistant computation to
different biometric modalities; (2) investigating the effect of
the proposed computation for digital tampered images; and (3)
investigating the impact of various settings for P (T = 1).
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