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ABSTRACT
Dictionary-based approaches are the focus of a growing atten-
tion in the signal processing community, often achieving state
of the art results in several application fields. Albeit their suc-
cess, the criteria introduced so far for the assessment of their
performances suffer from several shortcomings. The scope of
this paper is to conduct a thorough analysis of these criteria
and to highlight the need for principled criteria, enjoying the
properties of metrics. Henceforth we introduce new criteria
based on transportation like metrics and discuss their behav-
iors w.r.t the literature.

Index Terms— Dictionary learning, dictionary recover-
ing, metric, transportation distance, detection rate.

1. INTRODUCTION

Dictionary learning approaches have been the subject of an
increasing attention in the last decade, combining latest ad-
vances in sparse approximations [1] and overcomplete rep-
resentations learning [2]. Important results have been ob-
tained on the applicative side [3, 4] e.g. denoising, inpaint-
ing, compression or classification. A key point in all these
applicative fields is the definition of a suitable assessment cri-
terion. Common practices rely on measures, often task spe-
cific [4] suffering from several drawbacks, among which non-
convexity, data/task-dependence, parameterization, etc. can
be cited. These drawbacks can be overcome when the criteria
are derived from a distance enjoying metric properties. Sur-
prisingly enough, few works concerned a principled analysis
of the existing criteria and the introduction of metrics aimed
at dictionary learning assessment, apart from the noticeable
work of [5].

The contributions of this paper are to evaluate existing cri-
teria for dictionary learning assessment and to define a suited
metric for dictionaries. The existing criteria and the proposed
distance are evaluated on real and synthetic datasets. The re-
sults are threefold: (i) existing criteria fail to detect and cap-
ture changes during the first iterations of the optimization al-
gorithm whereas the proposed distance does, (ii) the distances
measured with the proposed metric have a smaller variance
than those obtained by the existing criteria and (iii) the ex-
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isting criteria completely fail at low SNR while the proposed
distance does not.

The lack of true metrics in dictionary learning is often
circumvented by assessing dictionaries through specific task
performances, such as in [3, 4], using a black box approach.
An alternative approach is to rely on the reconstruction error
values [4].

A recurrent methodology, introduced in [6, 3], is to gen-
erate a dataset from an initial dictionary and to assess the
ability of a dictionary learning algorithm to recover this ini-
tial dictionary from the generated dataset. The initial and the
learned dictionaries are then compared through a threshold-
based matching relying on the correlation between dictionary
atoms. Several implementations follow from the definition of
this criterion, referred to as detection rate, and lead to very
different results. Furthermore, the detection rate should be
carefully parameterized, as the results heavily depend on the
chosen threshold. Using this criterion, small variations could
result in important changes and large variations could go un-
detected.

A criterion, introduced in [5], is specifically designed to
compare dictionaries. This is the first attempt to define a met-
ric for overcomplete dictionaries with the aim of assessment.
In fact, it defines a distance under specific conditions and it
turns out to be a `∞ metric. This metric suffers however from
known limitations, such as sensitivity to outliers, which have
been intensively investigated in the literature [7].

In this paper, the dictionary learning algorithms and the
existing criteria are discussed in Section 2. The existing met-
ric for dictionaries is recalled in Section 3 along with the
proposition of a new one and their comparison. The exist-
ing criteria and the proposed distance are evaluated through
different experiments in Section 4. Section 5 concludes this
paper and points out some research directions.

2. DICTIONARY LEARNING AND ASSESSMENT

2.1. Dictionary learning problem

The dictionary learning problem aims at capturing most of
the energy of a set of training signals Y = [y1, . . . , yq]
with yj ∈ Rn and representing it through a collection
Φ = [φ1, . . . , φm] in Rn×m thanks to a set of sparse coeffi-
cients X = [x1, . . . , xq] in Rm×q . This collection Φ, which



is redundant (m � n), is called overcomplete dictionary.
The admissible set of dictionaries is convex and is defined as
DΦ = {Φ ∈ Rn×m : ‖φi‖2 6 1, i = 1, . . . ,m}. Classically,
the dictionary learning problem can be formulated as:

min
Φ∈DΦ,X∈Rm×q

‖Y − ΦX‖2F s.t. ‖xj‖p6 K, j = 1, . . . , q ,

(1)
with ‖ · ‖F the Frobenius norm and p = 0 or 1. This non-
convex problem is tackled by dictionary learning algorithms
(DLAs), in which energy patterns of the dataset are iteratively
selected by a sparse approximation step, and then updated by
a dictionary update step (see for instance [3, 4, 8, 9]).

2.2. Criteria for dictionary learning assessment

As the objective function of Eq. (1) is to minimize a recon-
struction error, a common assessment on real datasets is to
rely directly on the error value [4]. However, this criterion
could only offer a comparison of signals approximations with
original signals, not a comparison of dictionaries. It is also
possible to evaluate the learned dictionary using a black box
approach for specific applications (denoising, inpainting, de-
mosaicing, etc.) but this approach suffers from the same
drawbacks as the objective function-based comparison.

As said before, the most widely adopted methodology so
far has been proposed in [6, 3] and applied over simulated
data: it is called dictionary recovering. An initial dictionary
Φ ∈ Rn×m is randomly generated from a uniform distribu-
tion. A dataset of signals Y is created from this reference dic-
tionary, by mixingK random atoms with random coefficients.
A dictionary Φ̂ ∈ Rn×m′ is then learned on this dataset. The
dictionary recovering goal is to uncover most of the atoms of
Φ from the training set Y . This task is meant to qualitatively
evaluate dictionary learning methods. This evaluation relies
on a similarity criterion c computed between Φ and Φ̂.

The Frobenius norm ‖Φ − Φ̂‖2F is also not appropriate
since the learned atoms are not necessarily in the same order
as the original ones. Furthermore, some original atoms can be
learned several times while others can be missing.

Another way to compare dictionaries in dictionary recov-
ering task is to rely on a detection rate based on the correlation
between the original and the learned atoms, 〈φi, φ̂j〉. An orig-
inal atom φi is considered as recovered if there is at most one
learned atom φ̂j which provides a scalar product-based score
s greater than a given threshold t, commonly fixed at 0.99
[3]. This general recovering definition can lead to different
implementations which are not necessarily equivalent. Two
approaches for computing the detection rate can be found in
the literature: in the pairwise detection rate [3], each con-
sidered atom could be matched with one and only one target
atom, while in precision/recall detection rate [10], a given
atom could be matched with several target atoms.

Concerning the pairwise detection rate, to not be sensi-
tive to atoms permutation, the best practice is to rely on the

cross-Gramian matrix G = ΦT Φ̂ containing all correlations
between atoms 〈φi, φ̂j〉. Summed up in Algorithm 1, the pair-
wise detection rate cg is iteratively computed using:

sg(i, j) = max
j=1...m′

max
i=1...m

∣∣∣〈φi, φ̂j〉∣∣∣ . (2)

However, it is important to note that the detection rate cg can
be different w.r.t to the matching choice, as illustrated in Fig. 1
which compares a greedy matching with a different one.

A second approach [10] offers the possibility for an atom
to be matched several times in the score computation:

sr(i) = max
j=1...m′

∣∣∣〈φi, φ̂j〉∣∣∣ . (3)

The drawback of this score is that it is not symmetric with
respect to original and learned dictionaries. Two scores, pre-
cision and recall, have been proposed in [10] to overcome
this limitation. For each original atom φi, the recall score sr

defined in Eq. (3) gives the maximal scalar product with the
learned dictionary, and for each learned atom φ̂j , the preci-
sion score sp gives the maximal scalar product with the orig-
inal dictionary:

sp(j) = max
i=1...m

∣∣∣〈φi, φ̂j〉∣∣∣ . (4)

To obtain the final criterion, associated detection rates cr and
cp can be computed based on the thresholding of sr and sp.

Data: Cross-Gramian matrix G = ΦT Φ̂
repeat m times

find line i and column j of sg(i, j) from |G|
if sg(i, j) > t then cg ← cg + 1
set to 0 the line i and the column j of G

end
Result: Detection rate cg ← cg

m × 100
Algorithm 1: Greedy pairwise detection rate, where |G|
is the m×m′ matrix of the absolute values of G elements.
Indices i and j refer respectively to matrix line and column.

2.3. Limitations of existing criteria

The criteria introduced in the previous section suffer from
several drawbacks. The objective function is non convex: two
different dictionaries can obtain similar scores. The complex-
ity of this criterion directly depends on the number of training
signals q, which requires to solve the minimization problem
of Eq. (1). As this is the most computationally demanding
part of the dictionary learning algorithm and as the complex-
ity is a function of the dataset size q, this criterion becomes
not efficient. Since the objective function values strongly de-
pend on the dataset, one cannot rely on such criterion to define
a generic stopping criterion.



φ̂1 φ̂2 φ̂3

φ1 0.998 0.996 −
φ2 0.997 − −
φ3 − − 0.995

Fig. 1: Matrix |G| of scalar products of a toy example, with -
for any value lower than 0.99. Greedy method matches atoms
φ1 and φ̂1, and then φ3 and φ̂3, giving a detection rate of
66 %. The matching φ1 and φ̂2, φ2 and φ̂1, and φ3 and φ̂3

provides a rate of 100 %.

The main issue with the detection rate criterion, indepen-
dently of the chosen implementation, is the threshold effect.
Due to the binary nature of the thresholding, an atom just
under the threshold will not be counted. The detection rate
values also strongly depend on the chosen threshold which
should be carefully parameterized for each problem/dataset.

The study of these existing criteria suggests that they are
mostly a default choice because of the lack of criteria with
strong properties, like smoothness, differentiability, sign and
permutation invariance or convexity. This calls for the defini-
tion of real metric for overcomplete representations.

3. METRICS FOR DICTIONARIES

Formally, a metric is a function d : U × U → R+ = [0,∞)
defined for an arbitrary non empty set U and verifies the fol-
lowing three axioms: d(x, y) = 0 iff x = y, ∀x, y ∈ X (A1:
Separability), d(x, y) = d(y, x), ∀x, y ∈ X (A2: Symme-
try) and d(x, y) 6 d(x, z) + d(z, y), for all x, y, z ∈ X (A3:
Triangle inequality).

3.1. Existing metric

To the best of our knowledge, the unique work proposing a
metric between dictionaries is the one by Skretting et al. [5].
Combining the recall and precision scores, sr and sp, they
introduced the following distance:

dβ =
1

m+m′

( m′∑
j=1

acos (sp(j)) +

m∑
i=1

acos (sr(i))
)
.

This distance could take into account dictionaries of different
size, such as m 6= m′, but then the triangular inequality does
not hold and dβ fails to be a true metric in that case.

3.2. New metric

The main contribution of this paper is to introduce a new met-
ric enjoying nice desired properties. We proceed as follows:
(i) first, a suitable metric is defined between atoms, then (ii) a
set-metric (e.g. Hausdorff or Wasserstein metrics) is defined
based on this atom to atom “ground” metric.

For dictionaries, the following Euclidean-based distance
could act as a ground metric:

dE(φi, φ̂j)
2 = 2×

(
1− |〈φi, φ̂j〉|

)
,

assuming that ‖φi‖2=‖φ̂j‖2= 1. The distance dE is related
to the scalar product based detection rate, including the sign
invariance: φ̂j is considered recovered if it is close to −φi or
φi. The absolute value allows to be independent from the sign
of the scalar product, since there is no positivity constraints on
atoms in the classical dictionary problem.

Once the ground distance is defined, a first possibility to
establish a metric between collections of atoms is to rely on
the Hausdorff distance. For two non-empty finite1 dictionar-
ies Φ = {φi}mi=1 and Ψ = {ψj}m

′

j=1, we define:

dH(Φ,Ψ) = max
(

max
φ∈Φ

min
ψ∈Ψ

dE(φ, ψ),max
ψ∈Ψ

min
φ∈Φ

dE(φ, ψ)
)
,

as a metric for dictionaries computed from the dE Euclidean-
related ground distance. The Hausdorff distance is a `∞ met-
ric widely used in image processing: it is known to be sen-
sitive to variations on the elements lying on the hull of the
considered collections, such as outliers, and to be insensitive
to variations of elements inside it.

A more appropriate metric for sparse representations is
the Wasserstein distance, which could be defined as:

dW(Φ,Ψ) = min
T

( m∑
i=1

m′∑
j=1

Ti,j dE(φi, ψj)
p
)1/p

, p > 1,

where T is them×m′ transportation matrix. All the entries of
T are non-negative: Ti,j > 0, for 1 6 i 6 m and 1 6 j 6 m′.
It also verifies the following properties:

∑
j Ti,j = 1

m for 1 6

i 6 m and
∑
i Ti,j = 1

m′ for 1 6 j 6 m′. With p = 1, this
metric is closely related to the Earth Mover’s Distance (EMD)
or Mallows distance and many efficient implementations are
available (e.g. [11]). We are applying this metric with dE

acting as ground distance and the measure is uniform on the
support, that is T ism×m′ matrix with all entries being equal
to 1

m×m′ .
The proposed criteria dH and dW are in fact pseudo-

metrics, i.e. the separability axiom (A1) is relaxed to the
identity axiom: d(x, x) = 0,∀x ∈ X . This is a direct con-
sequence of the choice of dE as a ground distance: the sign
invariance property of dE does not allow to separate x from
−x. This is not an issue as the sign invariance is a desired
property for the pseudo-metric. One can note that dβ , for
similar reasons, is also a pseudo-metric.

3.3. Comparison and discussion

The dβ distance is a pseudo-metric, under the hypothesis that
all the dictionaries have the same number of atoms. Due to

1Without loss of generality, we consider only finite dictionaries here, but
this metric extends to infinite case as well.



Fig. 2: Convergence analysis on image reconstruction task,
objective function (top), dβ and dW distances (bottom).

the max operator, this metric is sensitive to outliers and to
changes occurring on the most “extreme” points of the con-
sidered collections. Consequently, it is also not suited to de-
tect changes affecting points near to the “center” of the collec-
tions. The distance dW, based on Wasserstein metric, is com-
puted for all correspondences between dictionary elements
(thanks to the transportation matrix T ) and thereby not sub-
ject to those limitations.

A major advantage of the Wasserstein metric is that it
could be easily modified to embed specific priors by enforcing
a probability measure over the atoms rather than using a uni-
form measure. Indeed, in its original formulation, the Wasser-
stein metric is distance between probability density functions.
In our case, we consider its simple version where the pdfs are
Dirac measures. Several probability priors can be defined.
For instance, it is possible in our case to enforce information
about the frequency of occurrence of each atom, or their con-
tribution in the signal energy, by modifying the entries of the
transportation matrix T leading to metrics aiming at captur-
ing specific behaviors of the dictionaries. Moreover, the dW

distance relies on a ground distance which could be adapted
to include the desired invariances (sign invariance is a simple
example).

Another point of comparison between dβ and dW con-
cerns the extension of dictionary learning to the multivari-
ate model. In this context, the signal is a matrix, thus the
atoms are matrices and the dictionaries are tensors [9], which
is different from the multichannel model [12]. The natural
extension of the dβ distance is to extend the score s using the
Frobenius norm. Nonetheless the dβ distance will suffer from
the same limitations explained previously. For the distance
dW, the only required change concerns the ground distance.

An immediate choice is to rely on the Frobenius distance. A
good alternative is to compare matrix atoms using principal
angles and thus use, for example, the chordal distance [13] as
a ground distance (with p = 2). Indeed, the resulting distance
will be still smooth and differentiable in addition to be invari-
ant to linear transforms, due to the chordal distance which is
a distance between subspaces [13].

4. EXPERIMENTS

Experiments were conducted to reproduce state-of-the-art re-
sults on real and synthetic datasets and to show how the pro-
posed set-metrics behave compared to the common criteria.

4.1. Convergence evaluation on real dataset

This first experiment is dedicated to show how the set-metrics
are applied for an empirical convergence analysis, in the con-
text of an image reconstruction task. We rely on the online
dictionary learning (ODL) algorithm [4] to learn a dictionary
Φ with m = 100 atoms from 8 × 8 grey level patches sam-
pled from a given set of images (same as those used in [4]).
Distances dβ and dW are computed every 10 iterations for
150 total iterations. The experiment is repeated 15 times due
to the randomization of examples during ODL process. On
Fig. 2, plain lines indicate median values, boxes indicate the
quartile and whiskers show extreme values.

Top part of Fig. 2 displays the objective value of Eq. (1)
computed on the whole set of patches. Indeed, for a large
dataset or online setup, the problem is intractable and one
should measure the objective value on a subset of the dataset,
degrading the obtained results. Fig. 2 shows the dβ dis-
tance and the proposed distance dW on the bottom part. As
the ideal dictionary is not known, the displayed values of
Fig. 2 are simply evaluated by computing the distance be-
tween the learned dictionary at two successive iterations, i.e.
d(Φk−1,Φk) where k is the current iteration.

The objective value is dependent on the dataset. In our
setting it takes values between 0.286 and 0.293, and the vari-
ance is higher than the one observed for dβ and dW. Both dβ
and dW capture small variations of the dictionary updates and
are suitable to evaluate the convergence of DLA. Their values
are bounded between 0 and 1. This suggests that dW and dH

are good candidates as stopping criterion for the DLA.

4.2. Dictionary recovering

A dictionary Φ of m = 50 normalized atoms of n = 20 sam-
ples is created from white uniform noise. A training dataset Y
is generated by combining atoms of Φ. Y contains q = 1500
training signals of length n. Each training signal is generated
as the sum of K = 3 atoms, the coefficients and the atom
indices being drawn from a uniform distribution. Gaussian
noise is added to training signals, such that SNR has a ratio



Fig. 3: Detection rate cg for t = 0.99 (left) and distances
1− dβ and 1− dW (right) as a function of learning iterations,
for a SNR of 30 (top row), 20 (middle) and 10 (bottom).

of 30, 20 or 10, and the experiments are repeated 15 times.
A dictionary Φ̂ with at least m atoms is learned from Y us-
ing online dictionary learning (ODL). Here, Φ̂ is initialized
with random signals from Y and 25 iterations of ODL are
performed. The quality of the ODL convergence is assessed
by measuring the proportion of atoms in Φ recovered in Φ̂.

The results are presented in Fig. 3: the detection rate cg
and the values 1− dW, 1− dβ are computed at each iteration.
It appears clearly that the dictionary has almost converged af-
ter only few iterations. It is thus interesting to investigate how
cg and the proposed metric capture the evolution of the dic-
tionary Φ̂ during these first iterations. cg fails to detect any
modification ongoing on Φ̂ in the first iterations. Then, after
an abrupt increase, the cg shows important variations, due to
the threshold effect. In the case of SNR = 10, cg is not able
to detect any atoms being recovered. The precision and recall
results are almost identical to those of cg and suffer from the
same limitations. The pseudo-metrics dβ and dW start with
positive values since Φ̂ is initialized with the training signals.
This fact is completely neglected by the detection rate-based
criterion. dW provides a more accurate evaluation of the con-
vergence, as it is demonstrated by the quartile measures which
is smaller than the dβ one. Furthermore, the distance values
obtained with dW are not affected by the SNR level while the
distance dβ is sensitive to this effect.

5. CONCLUSION

The contributions of this paper are the review of existing crite-
ria for dictionary assessment and the proposition of a new one.
We demonstrate the need for criteria with (pseudo-)metrics
properties. An experimental setting reveals that our new cri-
terion outperforms prior state of the art in terms of outliers
robustness, sensitivity to small variations and efficiency in
low SNR. It is a useful tool to compare different dictionary
learning algorithms, measuring their recovering ability. Fu-
ture work will be dedicated to the exploitation of the intro-
duced criterion in a dictionary learning process and in classifi-
cation tasks, e.g. driver behaviors identification in the context
of smart cars.
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