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ABSTRACT

In this study, we propose a reconstruction method to restore
the degraded features for robust speaker identification. The
proposed method is based on a hybrid generative model
which consists of deep belief network (DBN) and restricted
Boltzmann machine (RBM). Specifically, the noisy speech is
firstly decomposed into time-frequency (T-F) representations.
Then ideal binary mask (IBM) is computed to indicate each T-
F point as reliable or unreliable. We reconstruct the unreliable
ones by the proposed model iteratively. Finally, reconstruct-
ed feature is utilized to conventional speaker identification
system. Experiments demonstrate that the proposed method
achieves significant performance improvements over previous
missing feature techniques under a wide range of signal-to-
noise ratios.

Index Terms— Robust speaker identification, Missing
feature techniques, Restricted Boltzmann machine, Deep
belief network

1. INTRODUCTION

Speaker identification (SID) plays an important role in appli-
cations of security and access control. A typical speaker iden-
tification system includes feature extraction, speaker identity
modeling and decision making using pattern classification
methods. Commonly used speaker feature is short-time
cepstral coefficients such as Mel-frequency cepstral coeffi-
cients (MFCCs) and recently proposed gammatone frequency
cepstral coefficients (GFCCs) [1]. For speaker modeling,
Gaussian mixture models (GMMs) are often used to describe
the feature’s distribution of speakers. According to the
likelihoods of observing features given the speaker models,
recognition decisions are made. However, such speaker
recognition systems perform poorly when the input speech
is corrupted by environmental noise, especially when the
systems are trained on clean speech.

To deal with the robustness problem, filtering techniques
such as spectral subtraction [2] are used which assume a priori
knowledge of the noise spectrum. However, these methods
do not perform well when the noise is non-stationary and
this requirement limits the scope of the application. Other
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techniques rely on a statistical model of the noise, such as
parallel model combination (PMC) [3]. Although PMC has
been shown to be effective in stationary and non-stationary
noise cases [3], it still needs noise knowledge to perform the
adaptation.

Missing feature techniques are based on the observation
that speech signals have a high degree of redundancy [4].
It means that, when knowledge of the noise is unavailable,
one may ignore the severely corrupted speech data and base
the recognition on the little corrupted data, or reconstruct
the corrupted data by relatively clean ones [5]. These two
approaches are called marginalization and reconstruction [4].
In reconstruction, the aim is to estimate the values for the
unreliable (corrupted) components by conditioning on the
reliable ones and the speech model. After producing a
complete observation feature, recognition procedure performs
in a conventional way. In marginalization, recognition is
mainly based on reliable (uncorrupted) components with
integrating over the unreliable ones.

Marginalization needs to modify the conventional recog-
nition system and it can only work on the spectrographic
features which are known to be less optimal than cepstral. At
the same time, it is more time consuming for classification.
By contrast, data reconstruction can use reconstructed spec-
trograms to generate cepstral vectors. Therefore, it can serve
as front-end processing of conventional recognition system
and perform more rapidly.

In this study, we follow the missing feature technique for
robust speaker identification system by using reconstruction
approach. For reconstruction, the main issue is to build
speech prior model. Different with conventional method [4,6]
using GMMs as the speech model, we proposed reconstruc-
tion methods based on a hybrid model which is composed of
a RBM and a DBN. As a generative model, RBM and DBN
are considered to be more powerful than GMM [7]. Generally
speaking, it is helpful for reconstruction with a more accurate
speech model.

The paper is organized as follows. In the next section, we
present an overview of the proposed system. Section 3 gives
the systemic evaluation. We conclude the paper in Section 4.



2. SYSTEM DESCRIPTION

2.1. Background of missing feature reconstruction

To reconstruct the missing feature, the feature vector x is
firstly divided into reliable part x,. and unreliable part x,, :
x = (x,,z,). Reconstruction can be formulated as solving
the parameter optimization problem:

arg max (p(zr, vu)) (1)
where x,, is the parameter and x, is the constraint. It means
to find a configuration of z, which leads to the maximal
probability of joint configuration (x,,, x,.). Therefore, the first
thing is to model the speech prior model p(z). The second
thing is to reconstruct unreliable features based on the speech
prior model.

Previous researches, such as in [1,4,8,9], employed GMM
to describe p(x), which is trained using pooled training data.
For reconstruction, x, are estimated as the expectation of
Gaussian component’s mean conditioned on z,. Increasing
the number of mixture components of GMM is obviously
helpful for reconstruction, which leads to more accurate
description of p(z).

2.2. Modeling the p(x) by RBM

RBM is a type of undirected graphical model constructed
from a layer of hidden units and a layer of visible units with no
visible-visible or hidden-hidden connections. RBM defines
the joint probability of the visible and hidden units as

1
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where v and h denote a visible and hidden layer respectively.
Z is the partition function to ensure p(v, h) is a probability
distribution.

If we assume visible units are Gaussian random variables
with unit variance, we can define the energy function F as
formula (3). While if the visible units are Bernoulli random
variables, F is formulated as (4). For real-valued features, we
use Gaussian-Bernoulli RBM.
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where v; and h; denote the ith and jth units of v and h,
a; and b; denote the bias of visible layer and hidden layer
respectively, and w;; denotes the weight between v; and h;;.

Because there are no direct connections between hidden
units, hidden unit & is independent conditional on v.

p(hj = 1v) = o (bj + Yw;jv;) (5)

where o(z) = (14 e %)~ ! is sigmoid function.

Similarly, visible unit v; is independent conditional on h.
If v is Gaussian random variable, its conditional distribution
is defined as (6). And if v is Bernoulli random variable, its
conditional distribution is defined as (7).
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where N denotes the normal distribution.

We use Gaussian-Bernoulli RBM to describe the speech
prior model. The acoustic features are normalized to unit
variance. During the training phase, the parameters a;, b;, w;;
of RBM are initialized by small random values. The RBM
is trained by the contrastive divergence method. The details
could be found in [10].

2.3. Modeling p(x) by Hybrid Model

The structure of the proposed model illustrated in Fig. 1,
which is comprised of a DBN and a RBM. The training
phase has two parts. The one is to build the DBN. The
other is to create the RBM. We train the DBN layer by layer
as RBMs. The first layer of DBN is Gaussian-Bernoulli
RBM and the higher layers are Bernoulli-Bernoulli RBMs.
Similarly, the input acoustic features are normalized to unit
variance. We get the top layer representation of DBN
by propagating the acoustic features through three layers
using the sequence of posterior distributions (5). Then we
combine the top layer representation of DBN with acoustic
feature together to train a new RBM. It should be mentioned
that part of the visible units of this RBM are Gaussian
random variables (corresponding to acoustic feature) and
part of ones are Bernoulli random variables (corresponding
to top representation of DBN). It can be proven that the
conditional distribution and the posterior distribution can
still be represented by formula (5) and (6), (7) respectively,
because of the conditional independence between visible and
hidden units.
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Fig. 1. the structure of the proposed method
for speech prior model
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3. EXPERIMENT AND RESULTS

3.1. Database

The systems are evaluated using the 2002 NIST Speaker
Recognition Evaluation corpus [11]. The dataset contains
330 speakers. Each speaker has an around 2-minute-long
telephone recording with 8kHz sampling rate. As in [6], each
recording is divided into 5-second-long pieces, and 2 of them
are employed to test and remaining ones are used for training.
To study the performance of the proposed system, the test
utterances are mixed with 5 different types of noise, which are
speech shaped noise (SSN), white noise, babble noise, factory
noise and cocktail party noise. Each noise is mixed with test
utterances at 5 signal-to-noise ratio (SNR) levels from -6 dB
to 18 dB at 6-dB intervals.

3.2, Speaker Identification System

The missing feature techniques can be used as a front-end
processing. Therefore, we construct a conventional SID
system as in [6].

64-dimensional Gammatone feature (GF) of input speech
is first extracted. As in [6], we convert channels 11-64 of GF
to GFCC using discrete cosine transform (DCT) and keep the
lower 23-order of GFCC coefficients.

The speaker identification system employs Gaussian mix-
ture model (GMM) and universal background (UBM). Specif-
ically, UBM is a GMM with 1024 Gaussian components
which is trained using all the pooled training data. Each
speaker model is adapted from UBM using the utterances
of individual speaker [12]. Compared with individually
trained GMMs, GMM-UBM scores much faster and is more
discriminative. In Fig. 2, we show the recognition rates of
GMM-UBM on unprocessed noisy utterances.
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Fig. 2. SID performance of baseline system
for different noises on various SNR.

3.3. Mask Computation

Before applying reconstruction method, we should firstly
mark the reliable and the unreliable part of acoustic feature.
As noted above, SID system is built on GFCC which is

converted from GF. Therefore, we employ the ideal binary
mask (IBM) to indicate the reliable and the unreliable part.
IBM is defined as follows [6]:

if SNR(t, f) >0

otherwise

IBM(t, f) = { (1) (8)

T-F units are indexed by time ¢ and frequency f, where
(t, f) denote the T-F unit in time frame ¢ and frequency
channel f. IBM(t,f) and SNR(t, f) are the IBM and
the local signal-to-noise ratio of the T-F unit, respectively.
when given premixed target and interference signals, the IBM
can be easily computed. Here, we marked a feature as the
reliable part if IBM (t, f) = 1 or as the unreliable part if
IBM(t, f) =0.

3.4. Comparison of Reconstruction Approaches

We should mention that reconstruction approaches try to
impute corrupted GF not GFCC. The whole procedure of
robust speaker identification is as follows: 1) training the
speech model using 54-dimentional GF (channels of 11-64);
2) using the IBM to indicate the reliable and unreliable units
on GF map of noisy speech; 3) reconstructing corrupted GF
by speech models; 4) converting the reconstructed GF into
GFCC and recognizing the speaker by SID system.

To evaluate the performance of the proposed reconstruc-
tion method, other two methods are presented here. One
is GMM-based reconstruction method [5]. And the other is
based on RBM, as described in section 2.2.

If there is no reliable unit in a frame, the optimization
problem has no constraint. Therefore, we have to perform
frame selection before reconstruction. Our method is quite
simple. We choose a frame if it has at least one reliable unit.

The GMM-based reconstruction approach is implemented
according to [4]. We train a 2048-component GMM with
diagonal covariance using all the pooled training data. The
posteriori probability of the Gaussian component is calculated
given the reliable GF units.We estimate the unreliable GF
units as the expectation of Gaussian components’ mean. More
details could be found [4, 6].

The RBM-based approach employs a Gaussian-Bernoulli
restricted Boltzmann machine with 200 hidden units to build
speech model. One iteration of contrastive divergence [10]
is utilized to train the RBM. The learning rate is 0.001 and
batch size is 100. During the reconstructing phase, we firstly
initialize the input feature by keeping the reliable part x,
and setting the unreliable part x,, to zero. We compute the
hidden layer representation conditioned on the input feature
by formula (5). Then we reconstruct the feature by formula
(6). After that, the x,, is replaced by the corresponding part
of reconstructed feature. The entire procedure runs several
times. We also analyze the influence of RBM with different
hidden units to SID accuracy, which could be seen in Fig. 4.



The proposed reconstruction method is comprised of a
DBN and a RBM. The DBN has three layers which are one
visible and two hidden layers. The size of the visible layer
corresponds to GF vector size which is 54. The sizes of
the second and the third layers are both 50. To train the
RBM of hybrid model, we combine the GF and its top layer
representation of DBN. Hence, the size of the visible layer
of RBM is 104 (54-dimensional GF plus 50-dimensional top
layer representation of DBN). The size of the hidden layer
of RBM is set to 100. During the reconstructing phase, the
acoustic feature is initialized by keeping the reliable part x,.
and setting the unreliable part z, to zero. We propagate
the acoustic feature through DBN. Then we combine the
top layer representation of DBN with the acoustic feature
as the input of RBM. The unreliable part x,, is filled with
the reconstructed feature of RBM. The entire procedure runs
several times until the reconstructed feature becomes stable.

Fig. 3. illustrates the reconstructed features using the
three methods. The features reconstructed by GMM are
too smooth to lose the details. Results of RBM without
over-smoothing are better than GMM’s. But the RBM only
reconstruct the local structure and lost the big picture. DBN’s
results are more close to the expected ones. And we can see
the DBN have reconstructed the big picture and not to be over-
smoothing.
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Fig. 3. Comparison of reconstruction methods for a utterance
mixed with factory noise at OdB. (a) cochleagram of the
utterance. (b) cochleagram of the mixture. (c) Ideal
Binary Mask of the mixture. (d) Reconstructed cochleagram
by GMM. (e) Reconstructed cochleagram by RBM. (f)
Reconstructed cochleagram by the proposed method.

3.5. Evaluation Results

We employ SID accuracy rate as the metric to evaluate
the three reconstruction methods. Table I shows the SID
performances of the three reconstruction methods: the GMM-
based, RBM-based and the proposed method. As shown in
the table, the proposed method obtains the best results for all
types of noisy utterances. Compared with GMM-based and
RBM-based methods, the average SID accuracy rates of the
proposed method are improved 8.2% and 3.4% respectively.
Especially in low SNR cases, the improvements are more
obvious. We also compare the numbers of parameters of
three models. In Table II, we can see that the GMM
has the largest number of parameters among three models,
but its performance is the worst. It shows that RBM-
based and DBN-based method are more powerful to build
speech module. Meanwhile, the number of parameters of the
proposed model is a bit more than that of RBM.

To compare the RBM and the proposed model further, we
investigate the performance of RBMs with different numbers
of hidden units. In Fig. 4, it shows the average SID rate
on all kinds of noisy conditions and all SNR levels. As
shown in Fig. 4, enlarging the hidden units improves the SID
performance when the hidden layer size is small (from 10 to
50). However, the performance didn’t change significantly as
the size keeping increasing. The reason is that in DBN, the
local characteristics are taken care of using the lower layers
while higher-order and highly non-linear statistical structure
in the input is modeled by the higher layers [7]. We exploit
the top layer representations of DBN as additional constraints
in the parameter optimization problem.
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Fig. 4. performances of RBM reconstruction method
with different number of hidden units.

4. CONCLUSION

In this paper, we propose reconstruction method based on a
hybrid model to improve the robustness of speaker recogni-
tion systems. The experiment results show that the proposed
method outperforms the conventional GMM-based method.
So far as we know, this is the first time to reconstruct the
corrupted speech feature using RBM and DBN for robust
speaker identification.



Table 1. SID accuracy (%) of the three reconstruction
methods. GMM-based, RBM-based and proposed method.
Babble | -6dB | 0dB | 6dB | 12dB | 18dB | Avg.

GMM 35.61 | 66.82 | 84.85 | 90.90 | 95.00 | 74.64
RBM 53.79 | 75.91 | 87.73 | 93.03 | 95.76 | 81.24
Proposed | 55.91 | 79.55 | 90.75 | 92.88 | 95.91 | 83.00

Cocktail | -6dB | 0dB | 6dB | 12dB | 18dB | Avg.
GMM 39.39 | 69.85 | 86.51 | 90.76 | 95.15 | 76.33
RBM 56.67 | 79.39 | 88.18 | 93.03 | 95.91 | 82.64

Proposed | 57.58 | 80.15 | 89.70 | 93.33 | 95.61 | 83.27

Factory | -6dB | 0dB | 6dB | 12dB | 18dB | Avg.
GMM 22.73 | 53.79 | 76.67 | 87.88 | 94.24 | 67.06
RBM 39.24 | 64.09 | 80.91 | 88.64 | 92.12 | 73.00

Proposed | 41.82 | 71.97 | 86.21 | 91.97 | 96.76 | 77.47

SSN -6dB | 0dB | 6dB | 12dB | 18dB | Avg.
GMM 18.33 1 44.39 | 71.82 | 85.91 | 88.94 | 61.88
RBM 27.88 | 52.42 | 70.61 | 79.39 | 86.36 | 63.33
Proposed | 31.36 | 63.64 | 83.33 | 91.06 | 95.00 | 72.88

White | -6dB | 0dB | 6dB | 12dB | 18dB | Avg.
GMM 23.33 | 53.48 | 76.06 | 85.76 | 93.18 | 66.36
RBM 26.82 | 57.27 | 79.09 | 89.09 | 94.09 | 69.27

Proposed | 25.30 | 55.00 | 80.30 | 90.45 | 95.45 | 69.30

Table 2. the number of parameters
of three reconstruction methods.

GMM RBM Proposed
Number of 54x50+2x50x50
parameters >472048x2 | 54x200 +(54+50) x100
Total 221K 11K 18K
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