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ABSTRACT

Instantaneous frequency attractors (IFAs), obtained from the

phase of a time-frequency representation, have been intro-

duced for instantaneous frequency (IF) estimation. In this

paper, another kind of attractors called group delay attractors

(GDAs) are proposed to improve the IFA-based method. The

GDAs can reveal IFs which cannot be estimated from the

IFAs. Simulation results show that the IF estimation method

based on both the GDAs and IFAs outperforms the well-

known estimation method, i.e. ridge detection. Also, it is

shown that the proposed method creates much less spurious

IFs than the IFA-based method in noisy environments.

Index Terms— Instantaneous frequency estimation, local

group delay, local instantaneous frequency, time-frequency

representation

1. INTRODUCTION

Instantaneous frequency (IF) is an important characteristic

used to describe the mechanisms for nonlinear and nonsta-

tionary processes. It arises in various areas such as com-

munications, acoustics, speech, geophysics and biomedicine.

Time-frequency (TF) analysis is one of the most popular

and efficient techniques in IF estimation, especially for mul-

ticomponent signals. An outstanding time-frequency rep-

resentation (TFR)-based IF estimation method contains a

signal-dependent TFR with high energy concentration and a

well-designed IF estimation method. The focus of this paper

is on the latter no matter the given TFR is satisfactory or not.

Since TFRs can concentrate the energy of a signal along

its IFs, the IFs are commonly estimated from the positions

of the local maxima on the TF energy distribution [1], also

known as ridge detection. Besides the envelope of the TFR,

the phase part can also be used for IF estimation. In [2], Abe

and Honda proposed an estimation method based on IF attrac-

tors (IFAs). The IFAs are local IFs, calculated from the phase

of the TFR, satisfying two particular conditions. If the TFR

has high enough energy concentration, the IFAs can exactly

reflect the actual IFs of the signal. It has been shown that

the IF curves estimated from the IFAs are more smooth and

accurate, while ridge detection yields stepwise IF contours.

In this paper, the IFA-based method is improved by intro-

ducing another kind of attractors, called group delay attractors

(GDAs). Similar to the IFAs, the GDAs are obtained from the

local group delays (GDs), which are also calculated from the

phase of the TFR. Since the IFs can also be estimated from the

GDAs, an IF estimation method based on both the IFAs and

GDAs is proposed. Simulation results show that the GDAs

can help reveal the IFs that cannot be estimated from the IFAs

due to the unsatisfactory energy concentration of the TFR.

Plus, it is shown that the proposed method provides more ac-

curate IF estimation with less artifacts, compared with ridge

detection on S-method (SM) [3] and ridge detection on re-

assigned SM [4]. In noisy environments, besides the accu-

racy of the estimated IFs, the number of spurious IFs caused

by noise is also a critical concern, especially when the actual

number of IFs is unknown. Accordingly, another estimation

strategy that uses the IFAs, GDAs and two TFRs with dif-

ferent window widths is presented. Statistical results demon-

strate that the proposed method creates much less spurious

IFs than the IFA-based method.

The concept of local IFs and local GDs has been used

in various reassignment methods [5, 6]. However, in most

of these methods, the local IFs and the local GDs are used to

produce a more concentrated TFR. In [7], the authors estimate

the IFs based on the similar notion as the IFAs, but the GDAs

are not considered. Although the work in [8] estimates the IFs

directly from the local IFs and/or local GDs, there are more

spurious IFs because the determination of whether or not the

local IFAs/GDAs are the desired IFs is less rigorous.

2. REVIEW OF INSTANTANEOUS FREQUENCY

ATTRACTORS

In the sinusoidal model of [2], the IFs are estimated from the

phase of a short-time Fourier transform (STFT). The STFT of

a signal x(t) with the kernel function h(t) is defined as

X(t, ω) =

∫
∞

−∞

x(τ)h(τ − t)e−jωτdτ . (1)

With fixed ω, F (t, ω) = ejωtX(t, ω) can be deemed as the

bandpass signal of x(t) at frequencyω. The local IF is defined
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Fig. 1. (a) IFs of a signal consisting of three linear chirp components and -10dB contour plot of the Gaussian kernel used in the

STFT. (b) Local GD t̂(t, ω) versus time t (the solid line) and the GDAs (marked by small circles) at 64 Hz. (c) Local IF ω̂(t, ω)
versus frequency ω (the solid line) and the IFAs (marked by small circles) at time instant t = 0.5 sec.

as the IF (i.e. first derivative of the phase) of F (t, ω):

ω̂(t, ω) =
∂

∂t
arg [F (t, ω)] = ω +

∂

∂t
arg [X(t, ω)] . (2)

To avoid the discontinuity problem when calculating the

phase, assume X(t, ω) = a+ jb such that

ω̂(t, ω) = ω +
a∂b
∂t

− b∂a
∂t

a2 + b2
, (3)

where the time derivative of X(t, ω) can be alternatively cal-

culated by replacing h(t) in (1) by ∂h(t)/∂t:

∂X(t, ω)

∂t
= −

∫
∞

−∞

x(τ)
∂

∂t
h(τ − t)e−jωτdτ . (4)

Define µ(t, ω) = ω̂(t, ω) − ω. Then, at each time instant t,
the IFAs are defined as the TF points satisfying

µ(t, ω) = 0 and
∂

∂ω
µ(t, ω) < 0. (5)

Due to the lack of a clear explanation for the above two con-

ditions in [2], later together with the GDAs, a simple example

will be given to illustrate why these two conditions make the

IFAs reflecting the IFs.

3. PROPOSED INSTANTANEOUS FREQUENCY

ESTIMATION METHOD

In this section, another kind of attractors called GDAs are

introduced to improve the IFA-based method. Although the

STFT is still adopted to explain the notion of the GDAs, in

the end of this section, the extension to quadratic TFRs will

be discussed.

3.1. Definition of group delay attractors (GDAs)

For a linear chirp x(t) = exp(j a
2
t2), it is apparent that the IF

is ω(t) = ∂
∂t

arg [x(t)] = at. Also, the IF can be determined

from the group delay (GD) of the signal, defined as t(ω) =

−

∂
∂ω

arg [X(ω)] = 1

a
ω. Applying this notion to the STFT in

(1), for each time instant t, the local GD is obtained from the

frequency function X(t, ω),

t̂(t, ω) = −

∂

∂ω
arg [X(t, ω)] . (6)

Similar to (3), assume X(t, ω) = a + jb such that the local

GD can be calculated from

t̂(t, ω) = −

a ∂b
∂ω

− b ∂a
∂ω

a2 + b2
. (7)

The frequency derivative of X(t, ω) can be alternatively car-

ried out from the following formula:

∂

∂ω
X(t, ω) =

∫
∞

−∞

x(τ) (−jτ · h(τ − t)) e−jωτdτ

= −j

∫
∞

−∞

x(τ)(τ − t)h(τ − t)e−jωτdτ − jtX(t, ω), (8)

where the first term of (8) is equivalent to the STFT in which

h(t) is replaced by th(t). Define ν(t, ω) = t̂(t, ω)−t. At each

frequency ω, the GDAs are defined as TF points satisfying

ν(t, ω) = 0 and
∂

∂t
ν(t, ω) < 0. (9)

An example is given in Fig. 1 to illustrate why the above

two conditions make it possible to estimate the IFs from the

GDAs. Fig. 1(a) displays the IFs of a signal comprising three

linear chirp components. If the kernel of the STFT is a Gaus-

sian function, its TF distribution is a 2D Gaussian mask with

-10dB contour shown as the ellipse in Fig. 1(a). The local GD

at TF point p can be deemed as the local mean time (weighted

by the mask) with p as the center. As the Gaussian mask shifts

right, it would contain the part of signal at higher time in-

terval and lead to higher local GD. For example, for the TF

points near (0.109 sec, 64 Hz), the leftmost component dom-

inates the local GDs, and thus the local GDs are near 0.109

sec. Since there are three components at 64 Hz, the local GD
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(d) Proposed method

Fig. 2. (a) Spectrogram of a signal consisting of two smooth

linear chirps and two sharp linear chirps, (b) IFAs, (c) GDAs,

and (d) proposed IF estimation combining IFAs and GDAs

(IF curves with too short length are eliminated).

t̂(t, ω) versus time t at 64 Hz is a staircase-like function, as

depicted in Fig. 1(b). If the second condition in (9) is not

used, the TF points (0.309 sec, 64 Hz) and (0.69 sec, 64Hz)

will be misidentified as GDAs. Similarly, the local IF at TF

point p can be deemed as the local mean frequency with p as

the center. The local IF ω̂(t, ω) versus ω at t = 0.5 sec, as

depicted in Fig. 1(c), is also a staircase-like function because

there are three components at 0.5 sec. If the second condition

in (5) is not used, the TF points (0.5 sec, 39 Hz) and (0.5 sec,

89 Hz) will be misidentified as IFAs.

3.2. IF estimation method based on GDAs and IFAs

Comparing (5) with (9), we can find out that the IFAs corre-

spond to vertically estimating the IFs, while the GDAs cor-

respond to horizontally estimating the IFs. Compared with

vertical estimation, the horizontal estimation is more suitable

to estimate rapidly varying IFs. Therefore, it can be expected

that the GDAs may reveal the IFs which are not estimated

from the IFAs, and it explains why the proposed IF estima-

tion method takes both IFAs and GDAs into account. The

algorithm of the proposed method is presented as follows:

1. The IFAs and GDAs are calculated from the given TFR.

2. The IFAs/GDAs are separated into several IF curves

through curve tracing [9] on the TF plane.

3. The IF curves with too short length (depending on the

length of the signal) are deemed as noise components or

artifacts and discarded.

4. The remaining IF curves obtained from the IFAs and those

from the GDAs are combined together by an OR operator.

If two TFRs with different window widths are available, the

IFAs and GDAs can be obtained from different TFRs. In this
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(a) S−method
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(b) Horizontal ridges
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(c) Vertical ridges
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(d) Horizontal + Vertical ridges

Fig. 3. (a) Magnitude of the S-method of a three-component

signal, (b) horizontal ridges, (c) vertical ridges, and (d) com-

bination of horizontal and vertical ridges after elimination of

short-length ridges and energy thresholding.

case, the number of spurious IFs can be reduced, especially

for noisy signals. Details will be illustrated directly by an

example in Sec. 4.3

In [5], it has been indicated that the local IF and local GD

are closely related to the TF reassignment; that is, (2) and (6)

can also be expressed as

ω̂(t, ω) =

∞∫
−∞

∞∫
−∞

ηWx(τ, η)Wh(t− τ, ω − η)dτdη

∞∫
−∞

∞∫
−∞

Wx(τ, η)Wh(t− τ, ω − η)dτdη

, (10)

t̂(t, ω) =

∞∫
−∞

∞∫
−∞

τWx(τ, η)Wh(t− τ, ω − η)dτdη

∞∫
−∞

∞∫
−∞

Wx(τ, η)Wh(t− τ, ω − η)dτdη

, (11)

where Wx(t, ω) and Wh(t, ω) are the Wigner-Ville distribu-

tions of x(t) and h(t), respectively. Since Wh(t, ω) in (10)

and (11) can be replaced by an arbitrary low-pass kernel, the

proposed method can be extended to quadratic TFRs.

4. SIMULATION RESULTS

In all the simulations, STFT with Gaussian window function

is adopted because the optimal window width can be easily

determined from [10].

4.1. Comparisons between the proposed method and the

IFA-based method

Consider a signal consisting of two smooth linear chirps and

two sharp linear chirps, all of which have unit envelope. The

STFT of the signal is shown in Fig. 2(a), and the used window

width σ2 = 0.0013 is not the optimal for either the smooth
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(a) Reassigned S−method
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(b) Horizontal ridges
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(c) Vertical ridges
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(d) Horizontal + Vertical ridges

Fig. 4. (a) Magnitude of the reassigned S-method of a three-

component signal, (b) horizontal ridges, (c) vertical ridges,

and (d) combination of horizontal and vertical ridges after

elimination of short-length ridges and energy thresholding.

chirps or the sharp ones. From the IFAs shown in Fig. 2(b),

the IFs of the smooth chirps are estimated with high accuracy.

However, the estimated IFs of the sharp chirps are discontin-

uous and there are a lot of artifacts between them. On the

contrary, the GDAs shown in Fig. 2(c) yield good IF estima-

tion for the sharp chirps but many artifacts for the smooth

ones. This simulation verifies that the GDAs have the ability

to reveal the IFs that cannot be estimated accurately from the

IFAs. In the proposed method, those artifacts (i.e. IF curves

with too short length) in the IFAs and GDAs are eliminated,

and then good IF estimation result can be obtained by com-

bining the IFAs and GDAs together, as depicted in Fig. 2(d).

4.2. Comparison between the proposed method and ridge

detection

For a fairer comparison, the ridge detection algorithm used

here combines the ridges detected along the frequency axis

(i.e. horizontal ridges) with the ridges detected along the time

axis (i.e. vertical ridges). The ridge detection algorithm is

performed on the S-method (SM) [3] and the reassigned SM

[4] because these two TFRs are based on the STFT, and thus

the same window width is used for all the TFRs.

Fig. 3(a) depicts the SM of a signal consisting of three

components. The first component has sinusoidal IF and is

overlapped with the second one, a linear chirp. The third

one (located on the upmost of the TFR) is also a linear chirp

but has much lower energy, and thus it is hardly visible from

the magnitude of the TFR. The horizontal ridges and vertical

ridges, shown in Fig. 3(b) and (c) respectively, are combined

after removing ridges with too short length. However, many

long-length spurious ridges still remain. These ridges can be

further removed by energy thresholding but at the cost of un-
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(a) STFT
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(b) IFAs
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(c) GDAs
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(d) Proposed method

Fig. 5. (a) Spectrogram of a three-component signal, (b) IFAs,

(c) GDAs, and (d) proposed IF estimation combining IFAs

and GDAs (IF curves with too short length are eliminated).
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Proposed method

Fig. 6. Root mean squared errors of the estimated IFs shown

in Fig. 3(d), Fig. 4(d) and Fig. 5(d): 1st component (sinu-

soidal IF), 2nd component (high-energy linear chirp), and 3rd

component (lower-energy linear chirp).

necessarily eliminating the ridge of the low-energy compo-

nent, as shown in Fig. 3(d). The ridge detection on the reas-

signed SM is illustrated in Fig. 4. It can be found that the re-

assigned SM provides higher energy concentration, but there

are more remaining spurious ridges and the ridge of the low-

energy component is also eliminated. Finally, the proposed

method is depicted in Fig. 5. By comparison, much less spu-

rious IFs are generated by the IFAs and GDAs. Since energy

thresholding is unnecessary, the IFs of the three components

can all be estimated. The root mean squared errors (RMSEs)

of the estimated IFs shown in Fig. 3(d), Fig. 4(d) and Fig. 5(d)

are depicted in Fig. 6, assuming that the remaining spurious

ridges can be clearly eliminated. The proposed method has

similar RMSEs for all the components, while the ridge detec-

tion has very poor performance for the 3rd component which

has much lower energy.

4.3. Proposed method in noisy environments

For noisy signals, if two STFTs with different window widths

are provided, the number of spurious IFs can be reduced by

the proposed method. The signal in Sec. 4.1 is used again
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(a) IFA−based method
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(d) Proposed method

Fig. 7. IF estimation of a noisy signal with SNR being 1.5dB:

(a) IFA-based method using the IFAs of STFT with σ2 =
0.0003 and the IFAs of STFT with σ2 = 0.0013, (b) IFAs

of the STFT with σ2 = 0.0003, (c) GDAs of the STFT with

σ2 = 0.0145, (d) proposed method based on the IFAs and the

GDAs (IF curves with too short length have been eliminated.)

with SNR being 1.5dB. In the IFA-based method, two sets

of IFAs obtained from the two STFTs are combined together

after eliminating ridges with too short length. For minimal

number of spurious IFs, the optimal choices of the window

widths are σ2 = 0.0003 and σ2 = 0.0013, and the result is

shown in Fig. 7(a). The remaining spurious IF curves are so

long that they are misidentified as the IFs of the signal. Thus,

the key for less spurious IF curves is reducing their length.

It can be expected that the STFT with shorter window

width yields longer vertical ridges, while the STFT with

longer window width leads to longer horizontal ridges. Ac-

cordingly, in the proposed method, the IFAs are obtained

from the STFT with σ2 = 0.0003 (Fig. 7(b)), while GDAs

are calculated from the STFT with σ2 = 0.0145 (Fig. 7(c)).

Then, most of the spurious IF curves are short enough to

be eliminated, and combining the IFAs and the GDAs leads

to Fig. 7(d). This experiment also shows that even if non-

optimal window width is used, the proposed method has

much less spurious IFs with acceptable IF estimation accu-

racy. A statistical result in Fig. 8 shows the average number

of the remaining spurious IFs at any time instant. It can

be found that the proposed method greatly outperforms the

IFA-based method.

5. CONCLUSION

In the sinusoidal model of [2], the IFs are estimated from the

IFAs, which are defined based on the phase of the TFR. In

order to improve this IF estimation method, the GDAs, which

are also obtained from the phase of the TFR, have been pro-
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Fig. 8. Comparison of the proposed method and the IFA-based

method on the average number of the remaining spurious IFs

at any time instant.

posed in this paper. Since the GDAs can reveal IFs which

are not estimated from the IFAs, the proposed method (i.e.

the IF estimation based on GDAs and IFAs) outperforms the

IFA-based method and creates less spurious IFs in noisy envi-

ronments. Also, it has been shown that the proposed method

provides better IF estimation results than ridge detection.
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