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ABSTRACT

This paper deals with joint blind source separation (JBSS) of
multidimensional components. JBSS extends classical BSS
to simultaneously resolve several BSS problems by assuming
statistical dependence between latent sources across mixtures.
JBSS offers some significant advantages over BSS, such as
identifying more than one Gaussian white stationary source
within a mixture. Multidimensional BSS extends classical
BSS to deal with a more general and more flexible model
within each mixture: the sources can be partitioned into
groups exhibiting dependence within a given group but inde-
pendence between two different groups. Motivated by various
applications, we present a model that is inspired by both ex-
tensions. We derive an algorithm that achieves asymptotically
the minimal mean square error (MMSE) in the estimation of
Gaussian multidimensional components. We demonstrate the
superior performance of this model over a two-step approach,
in which JBSS, which ignores the multidimensional structure,
is followed by a clustering step.

Index Terms— Joint BSS; independent vector analysis;
multidimensional ICA; independent subspace analysis

1. INTRODUCTION

In this work, we present a model inspired by two recently-
proposed extensions to blind source separation (BSS) that un-
til now have been dealt with only separately: 1) independent
vector analysis (IVA), also termed joint BSS (JBSS) [1, 2]
and 2) multidimensional independent component analysis
(MICA), also termed independent subspace analysis (ISA) [3,
4]. The new model, termed joint ISA (JISA), can be regarded
as a generalization of JBSS to multidimensional components.

The idea of solving the dependent sources / multidi-
mensional components problem in terms of subspace sepa-
ration through ICA was first demonstrated in [5], on fetal
electrocardiography (ECG) recordings. The perspective of
multidimensional ICA, of vector-valued components whose
representation is based on unambiguous projections on the
sources’ respective subspaces, was presented in [5], and an
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elaborate geometric framework was suggested in [3]. Perfor-
mance bounds and identifiability results of second-order BSS
of piecewise-stationary multidimensional data can be found
in [6–8]. The advantage of using a true multidimensional
model over the more prevalent two-step approach of ICA fol-
lowed by a clustering step [9] has recently been quantified an-
alytically for second-order BSS of piecewise-stationary mul-
tidimensional data [8].

Multidimensional data may occur due to various complex
relations within the dependent elements. The dimension of
a dependent group may not always reflect the actual num-
ber of its underlying elements. As a result, in multidimen-
sional models, there is not always a physically meaningful
interpretation to separating the multidimensional components
back into single-dimensional elements. This holds, for ex-
ample, in neurological activity observed by functional mag-
netic resonance imaging (fMRI) [10], fetal ECG [3, 5], nat-
ural images [4] and astrophysical processes [11]. Hence, a
one-dimensional model for real-world data is often just an ap-
proximation.

The idea to simultaneously solve several BSS problems by
exploiting higher-order statistical dependence between latent
sources across mixtures was introduced by Kim et al. [1], and
termed IVA. The method has been shown to be able to resolve
the permutation ambiguity that is inherent to classical BSS
up to a single permutation matrix common to all mixtures.
Li et al. [2] have shown that the JBSS framework provides
sufficient constraints for identifying multiple white stationary
real Gaussian sources, a problem that is non-identifiable with
classical BSS. It has later been shown that JBSS can be solved
also via generalized matrix diagonalization that minimizes a
quadratic criterion, and using either second- or higher-order
statistics [12]. Recently, JBSS algorithms that minimize the
maximum likelihood (ML), mutual information (MI) and en-
tropy have been proposed [13, 14]. A comprehensive theo-
retical analysis of JBSS can be found in [14] and references
therein. Considering the growing evidence of JBSS as a help-
ful tool in various applications, such as multiset data anal-
ysis [2, 12, 14] and dynamic systems [15], and the fact that
natural signals are often better modelled as multidimensional,
it is only natural to take advantage of the benefits of both.

In the following, †, E{·}, and tr{·} denote transpose, ex-
pectation and trace, respectively. Given a vector b of posi-



tive integers that sum up to m, bdiagb{M} extracts from an
m×m matrix M a block-diagonal matrix with block-pattern
b. For simplicity, we assume that all values are real.

The rest of this paper is as follows. In Sec. 2 we present
and define the model that we denote JISA, and formalize it
mathematically. In Sec. 3 we present a relative gradient (RG)
algorithm that achieves asymptotically optimal component
estimation for Gaussian data. Numerical simulations in Sec. 4
validate the correct functionality of the proposed algorithm.
We conclude our work with a discussion in Sec. 5.

2. PROBLEM FORMULATION

Consider T observations of K vectors x[k](t), modelled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K (1)

where A[k] are invertible m × m matrices that may differ
∀k. Given the partition s[k](t) = [s

[k]†
1 (t), . . . , s

[k]†
n (t)]†,

where s
[k]
i (t) are mi × 1 vectors, n ≤ m, mi ≥ 1 and∑n

i=1mi = m, the model that we define as JISA corresponds
to the assumption that all the elements of the Kmi × 1 vec-
tor si(t) = [s

[1]†
i (t), . . . , s

[K]†
i (t)]† are statistically dependent

and the pairs (si(t), sj(t)) are statistically independent for all
i 6= j ∈ {1, . . . , n}. Given the pattern m = [m1, . . . ,mn]

†

and the set of observations X = {x[k](t)}K ,T
k=1,t=1, the prob-

lem of JISA is that of finding full-rank matrices A[k] such that
the source vectors s1(t), . . . , sn(t) are as independent as pos-
sible. This notion is given a definite meaning in Section 2.1
where we set up a simple statistical model that, via its likeli-
hood function, yields a quantitative measure of independence.
When mi = 1 ∀i, we obtain the regular JBSS.

The above partition of s[k](t) induces a corresponding
partition in the mixing matrices: A[k] = [A

[k]
1 , . . . ,A

[k]
n ] with

A
[k]
i the ithm×mi column-block of A[k]. The multiplicative

model (1) may now be rewritten as a sum of n ≤ m compo-
nents: x[k](t) =

∑n
i=1 x

[k]
i (t), where x

[k]
i (t) = A

[k]
i s

[k]
i (t).

In a blind context, the component vector x
[k]
i (t) is better de-

fined than the source vector s
[k]
i (t). Indeed, for any arbitrary

invertible mi × mi matrix Z
[k]
i , it is impossible to discrimi-

nate between the representation of a component x
[k]
i (t) by the

pair (A[k]
i , s

[k]
i (t)) and (A

[k]
i Z

−[k]
i ,Z

[k]
i s

[k]
i (t)), where Z

−[k]
i

denotes (Z[k]
i )−1. This means that only the column space of

A
[k]
i , span(A[k]

i ), can be blindly identified. Therefore, JISA
is in fact a subspace estimation problem.

In the following, we focus on JISA using second-order
statistics (SOS). Assuming sample independence ∀t 6=
t′ and collecting s̃(t) = [s†1(t), . . . , s

†
n(t)]

†, the above

model implies that S̃
4
= E{s̃(t)s̃†(t)} =

[
S11 0 0

0
. . . 0

0 Snn

]
4
=

bdiag{S11, . . . ,Snn} is a Km × Km block-diagonal ma-
trix with block-pattern Km = [Km1, . . . ,Kmn]. Sij =

E{si(t)s†j(t)} is Kmi ×Kmj for 1 ≤ i, j ≤ n.
As we shall see shortly, it is useful to represent the entire

set of observations as

x(t) = As(t) (2)

where s(t) = [s[1]†(t), . . . , s[K]†(t)]† and x(t) =
[x[1]†(t), . . . ,x[K]†(t)]† are Km × 1 vectors and A =
bdiag{A[1], . . . ,A[K]}. Accordingly, we define X = ASA†

where S = E{s(t)s†(t)} and X = E{x(t)x†(t)}. With
these notations, s̃(t) = Φs(t), where Φ is the correspond-
ing Km×Km permutation matrix, and S̃ = ΦSΦ†.

We now discuss conditions under which blind identifica-
tion of the component subspaces is possible. As mentioned
in Sec. 1, one of the strong properties of JBSS is that it
can (jointly) resolve several BSS problems using SOS alone,
without further assumptions. Comparing the number of de-
grees of freedom (i.e. model unknowns) vs. number of con-
straints imposed by the data, as in [6, Sec. V.A], it is immedi-
ate to see that generically, for K > 1 the problem is always
well-posed and thus identifiability of the model is guaranteed
regardless of m. On the other extreme, the same calcula-
tion shows that imposing statistical independence of all pairs
(s[k]i , s

[k′ 6=k]
i ) yields a model that is never blindly identifiable

using SOS, without further assumptions. The latter is not
surprising, since such a model amounts to K separate BSS
problems. Further discussion of (non-) identifiability of JISA
is beyond the scope of this paper. Identifiability of classical
JBSS is discussed in [14].

Our goal is component separation. Consequently, we de-
fine the figure of merit, for one set of observations, as the
(normalized) mean square error (MSE) in the estimation of
xi(t) = [x

[1]†
i (t), . . . ,x

[K]†
i (t)]†,

M̂SEi =
1

σ2
i

1

T

T∑
t=1

‖x̂i(t)− xi(t)‖2 , (3)

where ‖ · ‖ denotes the Frobenius norm and σ2
i =

E{‖xi(t)‖2}. It can be shown (proof omitted) that estimates
of xi(t) obtained from matrices that satisfy the stationary
points of (6) achieve asymptotically (T → ∞) the minimal
mean square error (MMSE).

2.1. Likelihood

In the following, we consider a Gaussian model in which
si(t) ∼ N (0mi×1,Sii) are mutually independent samples
∀t 6= t′. Using the Kullback-Leibler-induced divergence
(KLiD) D(R1,R2) =

1
2 (tr{R1R

−1
2 } − log det(R1R

−1
2 ) −

m) between any twom×m positive definite matrices R1 and
R2, the (minus, normalized) log-likelihood for the model just
described can be written as [6, 16]

− 1
T log p({x(t)}Tt=1;A,S) = φ(A,S) = D(X,X) + κ

= D(X,ASA†) + κ = D(ΦA−1XA−†Φ†, S̃) + κ (4)



where A = {A[k]}Kk=1 and X = 1
T

∑T
t=1 x(t)x†(t) is the

empirical counterpart of X. The term κ = T
2 (log det(2πX)+

Km) is irrelevant to the maximization of the likelihood since
it depends only on the data and not on the parameters. The
third equality in (4) follows from (2). The fourth equality
follows from the definitions of Φ and D(·).

2.2. Derivation of the Relative Variations

We now derive the RG of the log-likelihood (4), which
is the core of our algorithm. Given the block-diagonal
structure of S̃, the last step in (4) gives rise [16] [6, Ap-
pendix B] to an ML estimate of the nuisance parameter S̃,̂̃
SML = bdiagKm{ΦA−1XA−†Φ†}. We can now write
maxS log p({x(t)}Tt=1;A,S) = −C(A)+κwhere we define
the contrast function

C(A) = D(ΦA−1XA−†Φ†,bdiagKm{ΦA−1XA−†Φ†})

Since D(R,bdiagm{R}) ≥ 0 with equality iff R =
bdiagm{R}, minimizing the contrast amounts to a block-
diagonalization problem under the constraint that A is block-
diagonal.

The next step is to estimateA. For this purpose, we calcu-
late the derivative of φ(A,S) w.r.t. each A[k] separately, for
fixed S and A[l 6=k], as we now explain. Consider a relative
variation A[k] → A[k](I + δ[k])−1, where δ[k] is m×m and
has arbitrary values but such that I+δ[k] is invertible1. Then,
the first-order variation of φ(A,S) can be expressed by the
Taylor expansion

φ({{A[l]}l 6=k,A
[k](I + δ[k])−1},S) = φ(A,S)

+ tr{(∇φ[k](A,S))†δ[k]}+O(‖δ[k]‖2) , (5)

where ∇φ[k](A,S) denotes the m × m RG of φ(A,S)
w.r.t. A[k]. Similarly to the derivation for multidimensional
BSS in [6, Sec. III.D], one obtains that ∇φ[k](A,S) =

E†kS−1A−1XA−†Ek − Im, where Ek ∈ RKm×m con-
sists of the adjacent m columns of IKm that correspond to
the columns of A[k] in A. The K terms ∇φ[k](A,S) can
be collected into ∇φ(A,S) = bdiagk{S−1A−1XA−†} −
I. It can be shown that the first-order variation of C(A)
w.r.t A[k], derived similarly to (5), obeys ∇C [k](A) =
∇φ[k](A,S)|S=ŜML . Given the above, we can now write

∇C(A) = ∇φ(A,S)|S=ŜML = (6)

bdiagk{Φ
† bdiag−1Km{ΦA−1XA−†Φ†}ΦA−1XA−†} − I

where bdiag−1m {·} stands for (bdiagm{·})−1. An ML esti-
mate of A is obtained from the stationary points of (6). This
is the basis for our RG algorithm, which is described in Sec. 3.

1It should be emphasized that A is block-diagonal by definition and thus
there is absolutely no meaning to perturbing its off-block-diagonal entries.
This is the bifurcation point from which the derivation of the RG takes a
different path than that in [6].

3. A RELATIVE GRADIENT ALGORITHM

We describe the proposed iterative RG algorithms in pseu-
docode, in Algorithm 1 and 2. The RG algorithm works as
follows: according to (5), if δ[k] is a matrix with small enough
values to ensure the invertibility of I + δ[k], and if A[k] is
changed into A[k](I+ δ[k])−1, then φ changes by the amount
tr{∇φ[k]†δ[k]} + O(‖δ[k]‖2). Given δ[k] = −λ∇φ[k] and
λ > 0 a real scalar, the update rule (line 5 in Algorithm 2)
changes φ into φ−λ‖∇φ‖2+O(‖∇φ‖3). Hence, the decrease
of φ is guaranteed for small enough λ and δ[k] such that the
higher-order terms in (5) become negligible. The update rule
is iterated until ‖∇φ‖ ≤ threshold. The transformation ma-
trix T reflects the relative change in A at each iteration. The
choice of the step-size in a RG algorithm determines its con-
vergence rate, in terms of the number of required iterations.
For our numerical experiments, we chose to set λ by a variant
of the backtracking line search, in which its two parameters
(see Algorithm 2) are drawn anew from a uniform distribu-
tion at each iteration: α ∼ U [0.01, 0.3], β ∼ U [0.1, 0.8].
This variation showed better convergence than fixing these
parameters at the beginning of the run.

Algorithm 1 An Iterative Algorithm for JISA

1: function JISA(X, Φ, K, m, threshold)
2: A← I, R← X . Init
3: while ‖∇C‖ > threshold do
4: Y ← ΦA−1XA−†Φ†

5: ∇C ← bdiagk{Φ
† bdiag−1Km{Y}YΦ} − I. (6)

6: Evaluate T . Algorithm 2
7: R← T−1RT−†

8: A← AT . For output only
9: end while

10: return A
11: end function

Algorithm 2 Relative Gradient Update Step

1: λ← 1, Choose α, β . Init
2: while C(A(I− λ∇C)−1) > C(A)− αλtr{‖∇C‖2} do
3: λ← βλ
4: end while
5: T← (I− λ∇C)−1

4. NUMERICAL VALIDATION

In this section, we illustrate the convergence prop-
erties of the algorithm, as well as its component-
separation capacities, in numerical experiments. The
real positive definite matrices Sii are drawn as Sii =

diag−
1
2 {UΛU†}UΛU† diag−

1
2 {UΛU†}, where UΛV† is

the singular value decomposition (SVD) of a Kmi × Kmi



matrix whose i.i.d. entries∼ N (0, 1). The underlying sources
are created by right-multiplying the transpose of the Cholesky
factorization of S̃ with Km × T i.i.d. ∼ N (0, 1) numbers.
The stopping threshold is set to 10−6, m = [1, 4, 5], K = 6
and T = 2 · 104. The mixing is realized as A[k] = I + Υ,
where the entries of Υ are zero-mean Gaussian i.i.d. with
standard deviation (std) 1/5 and drawn anew for each k. In all
the following numerical experiments, A is initialized with I.
Since the component estimates are invariant to block-diagonal
scaling (Sec. 2), we are concerned only about permutation er-
rors. Permutation that is not properly corrected causes signif-
icant errors in component reconstruction. In our experimen-
tal results, we verified that such errors did not occur. This
is due to the safety margins that we took in choosing the
above-mentioned simulation parameters, that usually assure
the proper convergence of the algorithm (Sec. 3). Further dis-
cussion of permutation ambiguity in JISA is beyond the scope
of this paper. For “backwards compatibility” we verified that
when the input to the algorithm is m = 1m×1, our algo-
rithm achieves a similar optimum as the JBSS SOS algorithm
in [16], up to acceptable numerical variations.

4.1. Convergence

We now illustrate the convergence properties of the algorithm.
We keep S and S fixed, only A varies at each of theMC = 94
trials. Fig. 1 shows the value of the contrast function (up) and
number of iterations (bottom) when the stopping criterion is
achieved. At each trial, the algorithm is run twice on the same
data, in two modes: in the first mode, the input parameter m
(Algorithm 1 line 1) reflects the true model structure. In the
second mode, the input parameter is set to 1m×1, a vector
of all ones. The latter implies that the algorithm is ignorant
of the true multidimensional structure of the data and instead
tries to fit it to a one-dimensional model. This corresponds to
applying, in a first step, a classical JBSS model to the data,
with m = 10 = n independent sources at each mixture (the
number of latent sources is the same in both cases). In a
second step, we cluster the output into the correct n multi-
dimensional components before evaluating the contrast func-
tion. We denote this two-step approach “mismodeling”.

It is clear from Fig. 1 (up) that in the correct model case,
the algorithm converges to the same optimum (up to small
variations that are due to the fact that the threshold is finite)
regardless of A. This follows from the definition of the KLiD.
It is interesting to note that even in adverse conditions, that
is, mismodeling, the algorithm does manage to converge to a
rather narrow range of values. This problem becomes more
severe as the mismodeling departs from the true data model.
In addition, we note in Fig. 1 (bottom) that the mismodeled
case usually requires a larger number of iterations to con-
verge. This, too, is expected, since the algorithm is trying to
block-diagonalize S̃ into smaller blocks than is actually pos-
sible and thus doing unnecessary work.
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Fig. 1: Convergence of the RG algorithm. Histogram of the
value of the contrast function (up) and number of iterations
(bottom) when the stopping criterion is achieved.

4.2. Component Separation

We now evaluate the component separation quality of the pro-
posed model and method. In the following experiment, we
run multiple trials for fixed S (same as in Sec. 4.1) and A and
varying S. The data is generated as explained above. As in
Sec. 4.1, we compare JISA with JBSS. In the latter case, we
cluster the output into the correct n multidimensional com-
ponents before evaluating the component separation quality.
For each trial we evaluate the normalized empirical MSE (3).
Fig. 2 illustrates our results. Subplot i corresponds to compo-
nent i. Each subplot shows the results of two different runs
of the algorithm on the same data: once as true JISA with
the correct data model, and once mismodeled, as explained
above. For each of the two runs of the algorithm, the mean
and std of M̂SEi are written above the corresponding sublot.
The histogram represents MC = 100 repetitions of this ex-
periment. The small values of M̂SEi in Fig. 2 confirm that the
components have been properly separated. Fig. 2 shows that
for all three components, there is a significant improvement
(decrease) in MSE when the correct model is used w.r.t. the
mismodeled scenario. This observation conforms with previ-
ous results on multidimensional components [6, 8].
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Fig. 2: Component separation. Histogram of the normalized
empirical MSE. Subplots correspond to components with di-
mensions 1, 4 and 5, respectively.



5. DISCUSSION

This paper provides a “proof of concept” for a new data
model that generalizes JBSS to multidimensional compo-
nents. We demonstrate that JISA is capable of identifying
real white Gaussian stationary multidimensional sources in
multiple static mixtures, a task that is non-identifiable when
only one such mixture is concerned or when there is no link
between the mixtures. In JISA, this is made possible thanks
to the additional diversity [14] offered by the statistical de-
pendence between mixtures. We derive a RG non-orthogonal
algorithm that is capable, as discussed in Sec. 2, of achiev-
ing asymptotically the MMSE in the joint estimation of sev-
eral Gaussian multidimensional components from their mix-
tures, based on minimizing a KLiD-based criterion. The algo-
rithm can be applied to non-Gaussian data as well. However,
in this case, the component estimation error will not achieve
the MMSE. Simulations demonstrate the proper convergence
of the algorithm when the small-errors regime is respected.
In addition, we illustrate the gain in using JISA over clas-
sical JBSS followed by clustering, in terms of accuracy and
number of iterations. Our analysis assumes that the dimen-
sion of the multidimensional components is known. At first
sight this might seem as a drawback of our method. How-
ever, in fact, one has to keep in mind that although BSS [17]
is a well-established method, and has proven useful in many
applications [18, Chapters 16–19], the assumption that real-
world signals can be modelled by one-dimensional sources is
often just an approximation. Therefore, the fact that certain
problems can be solved – to some extent – by classical BSS
or JBSS, that is, an implicit rigid choice of dimension=1 to
all the sources, does not mean that one should not be allowed
to make other choices. Hence, the fact that multidimensional
algorithms provide the user with the additional flexibility of
choosing the data dimensions should not be regarded as a
shortcoming of the algorithm but as means for a better fit to
the data. The question of how to determine the correct dimen-
sion for the data, be it one or more, is beyond the scope of this
work.
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