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ABSTRACT
We study the problem of sequential prediction of real-valued
sequences under the squared error loss function. While re-
fraining from any statistical and structural assumptions on the
underlying sequence, we introduce a competitive approach
to this problem and compare the performance of a sequen-
tial algorithm with respect to the large and continuous class
of parametric predictors. We define the performance differ-
ence between a sequential algorithm and the best parametric
predictor as “regret”, and introduce a guaranteed worst-case
lower bounds to this relative performance measure. In partic-
ular, we prove that for any sequential algorithm, there always
exists a sequence for which this regret is lower bounded by
zero. We then extend this result by showing that the predic-
tion problem can be transformed into a parameter estimation
problem if the class of parametric predictors satisfy a certain
property, and provide a comprehensive lower bound to this
case.

Index Terms— Sequential prediction, lower bound,
worst-case performance.

1. INTRODUCTION

In this paper, we investigate the generic sequential predic-
tion problem under the squared error loss function, where
we refrain from any statistical assumptions both on the al-
gorithms and sequences [1–3]. We consider an arbitrary, de-
terministic, bounded and unknown signal {x[t]}t≥1, where
|x[t]| < A < ∞ and x[t] ∈ R. In this sense, we define the
performance of a sequential algorithm with respect to a com-
parison class and try to predict the sequence as well as the
best predictor among the comparison class. In particular, we
define this competitive performance metric as follows

n∑
t=1

(x[t]− x̂s[t])2 − inf
c∈C

n∑
t=1

(x[t]− x̂c[t])2, (1)

for an arbitrary length of data n, and for any possible se-
quence {x[t]}t≥1, where x̂s[t] is the prediction at time t of
any sequential algorithm that has only access to data from x[1]
to x[t−1], and x̂c[t] is the prediction at time t of the predictor

c such that c ∈ C, where C represents the class of predictors
we compete against. We emphasize that the competition class
does not have any restrictions while making the prediction,
e.g., this class may contain predictors that has access to entire
sequence {x[t]}t≥1 even before processing starts (i.e., batch
predictors). In this sense, this competitive performance metric
in (1) can in fact, be viewed as the “regret” of the sequential
predictor for not knowing the future.

In order to obtain comprehensive results, we do not set
a specific comparison class but parameterize the compari-
son classes such that the parameter set and functional form
of these classes can be chosen as desired. Therefore, we
uniquely identify the class of parametric predictors with their
parameter vector of w , [w1, . . . , wm]T , and denote the
regret in (1) as follows 1

R(xn1 ) ,
n∑

t=1

(x[t]−x̂s[t])2− inf
w∈Rm

n∑
t=1

(x[t]−f(w, xt−1t−a))
2,

(2)
where f(w, xt−1t−a) is a parametric function whose parameters
w can be set prior to prediction, and a is an arbitrary integer
representing the tap size of the predictor. We emphasize that
even though the parameters of a parametric predictor can be
set prior to prediction, it is still obligated to use the data xt−1t−a
in order to predict x[t].

Under this framework, we introduce the generalized lower
bounds for sequential prediction by transforming the predic-
tion problem to a well-known and widely studied statistical
parameter learning problem [1–5]. Specifically, we show that
there always exist a sequence {x[t]}t≥1 such that the regret
in (2) is lower bounded by zero. We push the analysis fur-
ther and prove that there always exist a sequence for which
this regret cannot be smaller than O(ln(n)) if the parameter
function is in a separable form, i.e.,

f(w, xt−1t−a) = fw(w)
T
fx(x

t−1
t−a).

The organization of the paper is as follows. In Section 2,
we present the lower bounds for a generic class of parametric

1All vectors are column vectors and denoted by boldface lower case let-
ters. For a vector u, uT is the ordinary transpose. We denote xb

a ,
{x[t]}bt=a.



predictors. In Section 3, we consider a specific type of para-
metric predictors, namely the separable ones (the meaning of
“separable” will be cleared in the paper), and introduce a pro-
cedure to transform the prediction problem into a parameter
estimation problem. We finalize our paper by pointing out
several concluding remarks.

2. PARAMETRIC PREDICTORS

In this section, we investigate the worst-case performance of
sequential algorithms compared to the generic class of para-
metric predictors in order to obtain guaranteed lower bounds
on the regret. For any arbitrary data sequence {x[t]}t≥1 with
an arbitrary length n, we consider the optimal sequential pre-
dictor for that sequence and seek to find a lower bound on the
following regret

inf
s∈S

sup
xn
1

R(xn1 ), (3)

where S is the class of all parametric predictors. For this for-
mulation, we introduce the following theorem, which relates
the performance of any sequential algorithm to the general
class of parametric predictors.

Theorem 1: Given a parametric class of predictors in the
form f(w, xt−1t−a), where w ∈ Rm, we have

inf
s∈S

sup
xn
1

R(xn1 ) ≥ 0. (4)

This theorem implies that no matter how smart a sequen-
tial algorithm is or how naive the competition class is, it is
not possible to outperform the competition class for all se-
quences. As an example, this result demonstrates that even
competing against the class of constant predictors, i.e., the
most naive competition class, where x̂c[t] always predicts
a constant value, any sequential algorithm, no matter how
smart, cannot outperform this class of constant predictors for
all sequences.

Proof of Theorem 1: We begin our proof by noting that
for an arbitrary sequence of xn1 , the optimal sequential pre-
dictor may not be found straightforwardly. Yet, for a specific
distribution on xn1 , the best predictor is the conditional mean
on xn1 under the squared error [6]. For any distribution on xn1 ,
we have

inf
s∈S

sup
xn
1

R(xn1 ) ≥ inf
s∈S

Exn
1
[R(xn1 )] , (5)

where expectation is taken with respect to this particular dis-
tribution. Hence, it is enough to lower bound the right hand
side of (5) to get a final lower bound. By the linearity of the
expectation, we obtain

inf
s∈S

Exn
1
[R(xn1 )] = Ls(x

n
1 )− Lc(x

n
1 ), (6)

where Ls(x
n
1 ) denotes the minimum loss that can be achieved

with a sequential predictor for the sequence xn1 , i.e.,

Ls(x
n
1 ) , inf

s∈S
Exn

1

[
n∑

t=1

(x[t]− x̂s[t])2
]
,

and Lc(x
n
1 ) denotes the loss of the optimal predictor in the

competition class, i.e.,

Lc(x
n
1 ) , Exn

1

[
inf
w∈Rm

n∑
t=1

(x[t]− f(w, xt−1t−a))
2

]
.

We now select a parametric distribution for xn1 with pa-
rameter vector θ = [θ1, . . . , θm]T . Then consider Ls(x

n
1 )

and Lc(x
n
1 ) terms separately.

The squared-error loss Exn
1

[
(x[t]− x̂s[t])2

]
is mini-

mized with the well-known minimum mean squared error
(MMSE) predictor given by [6]

x̂s[t] = E
[
x[t]
∣∣x[t− 1], . . . , x[1]

]
= E

[
x[t]
∣∣xt−11

]
, (7)

where we drop the explicit xn1 -dependence of the expectation
to simplify notation. By expanding the expectation, we then
obtain

Ls(x
n
1 ) = Eθ

[
E

xn
1

∣∣θ
[

n∑
t=1

(
x[t]− E

[
x[t]
∣∣xt−11

])2]]
.

(8)
Now turning our attention back to Lc(x

n
1 ), we expand the

expectation and observe that

Lc(x
n
1 ) ≤ Eθ

[
inf
w∈Rm

E
xn
1

∣∣θ
[

n∑
t=1

(x[t]− f(w, xt−1t−a))
2

]]
.

(9)
Hence, for a distribution on xn1 such that

E
[
x[t]
∣∣xt−11 ,θ

]
= a(θ)h(θ, xt−1t−a), (10)

with some functions a(·) and h(·, ·), if we can find a vector
function g(θ) such that

f(g(θ), xt−1t−a) = a(θ)h(θ, xt−1t−a),

then (9) can be written as

Lc(x
n
1 ) ≤ Eθ

[
E

xn
1

∣∣θ
[

n∑
t=1

(
x[t]− E

[
x[t]
∣∣xt−11 ,θ

])2]]
.

(11)
Combining (6) with (8) and (11), we obtain

inf
s∈S

Exn
1
[R(xn1 )] ≥

Eθ

[
E

xn
1

∣∣θ
[

n∑
t=1

(
x[t]− E

[
x[t]
∣∣xt−11

])2]]

− Eθ

[
E

xn
1

∣∣θ
[

n∑
t=1

(
x[t]− E

[
x[t]
∣∣xt−11 ,θ

])2]]
,

(12)



which is by definition of the MMSE estimator is always lower
bounded by zero, i.e.,

inf
s∈S

Exn
1
[R(xn1 )] ≥ 0.

Hence, we conclude that for predictors of the form
f(w, xt−1t−a) for which this special parametric distribution,
i.e., w = g(θ) exists, the best sequential predictor will
be always outperformed by some predictor in the competi-
tion class of parametric predictors for some sequence xn1 .
This means that our proof follows if a suitable distribu-
tion on xn1 can be found for a given f(w, xt−1t−a) such that
f(g(θ), xt−1t−a) = a(θ)h(θ, xt−1t−a) with a suitable transforma-
tion g(θ).

We proceed by considering the following distribution on
xn1 . Suppose f(w, xt−1t−a) is bounded by some M ∈ R+ with
M < ∞ for all |x[t]| ≤ A, i.e., |f(w, xt−1t−a)| ≤ M . Then,
given θ from a beta distribution with parameters (C,C), C ∈
R+, we generate a sequence xn1 such that

x[t] =

{
A
M f(w, xt−1t−a) , with probability θ
− A

M f(w, xt−1t−a) , with probability 1− θ
.

Then

E
[
x[t]
∣∣xt−11 , θ

]
=

A

M
(2θ − 1)f(w, xt−1t−a).

Hence, this concludes the proof of the Theorem 1. �

3. SEPARABLE PARAMETRIC PREDICTORS

In this section, we consider the restricted functional form
f(w, xt−1t−a) so that f(w, xt−1t−a) is separable, i.e.,

f(w, xt−1t−a) = fw(w)
T
fx(x

t−1
t−a),

where fw(w) and fx(x
t−1
t−a) are some vector functions. De-

noting v , fw(w), we obtain the regret compactly as follows

R(xn1 ) =
n∑

t=1

(x[t]−x̂s[t])2− inf
v∈Rm

n∑
t=1

(x[t]−vTfx(x
t−1
t−a))

2.

We emphasize that this restricted form can be considered
as the super set of entire polynomial predictors, which are
widely used in many signal processing applications to model
nonlinearity such as Volterra filters [7]. This filtering tech-
nique is attractive when linear filtering techniques do not pro-
vide satisfactory results, and includes cross products of the
input signals.

Similar to the previous section, for any arbitrary data se-
quence {x[t]}t≥1 with an arbitrary length n, we consider the
optimal sequential predictor for that sequence and seek to find
a lower bound on the following regret

inf
s∈S

sup
xn
1

R(xn1 ),

where S is the class of all parametric predictors.
In Section 2, we have proven that there always exists a

sequence such that the performance of any sequential algo-
rithm compared to the generic class of parametric predictors
is lower bounded by zero. In the following theorem, we com-
pare the performance of any sequential algorithm with respect
to the class of separable parametric predictors and introduce
the following theorem.

Theorem 2: For any sequential algorithm, there always
exist a sequence for which the performance of a sequential
algorithm with respect to the class of separable parametric
predictors will always be lower bounded by O(ln(n)), i.e.,

inf
s∈S

sup
xn
1

R(xn1 ) ≥ O(ln(n)).

This theorem indicates that when the competition class
only consists of separable parametric predictors, the predic-
tion problem can be transformed into a parameter estimation
problem. By doing so, we show that no matter how smart a se-
quential algorithm can be, it cannot possibly achieve a better
learning rate than O(ln(n)) for all sequences. The algorithms
that are claimed to achieve a better learning rate are certainly
based on some ad-hoc assumptions such as a priori knowl-
edge on the underlying sequence and cannot be guaranteed to
achieve the claimed learning rate for all sequences. In fact, if
one finds an algorithm with an upper bound ofO(ln(n)), then
the performance of that algorithm cannot be further improved
for all sequences.

Proof of Theorem 2: Since we consider the class of sepa-
rable parametric predictors, we have

E
[
x[t]
∣∣xt−11 ,θ

]
= fw(g(θ))

T
fx(x

t−1
t−a), .

We then generate the underlying sequence xn1 as follows. De-
noting

fx(x
t−1
t−a) , [f1(x

t−1
t−a), . . . , fp(x

t−1
t−a)]

T ,

for some integer p, and given θ from a beta distribution with
parameters (C,C), C ∈ R+, we generate a sequence xn1 hav-
ing only two values, A and −A, such that

x[t] =

{
fn(x

t−1
t−a) , with probability θ

−fn(xt−1t−a) , with probability 1− θ
,

where
fn(x

t−1
t−a) ,

A

M
f1(x

t−1
t−r),

i.e., the normalized version of f1(xt−1t−r). Thus, given θ, xn1
forms a two-state Markov chain with transition probability
(1− θ). We then have

E
[
x[t]
∣∣xt−11 , θ

]
= (2θ − 1)fn(x

t−1
t−a).

Since we have

inf
s∈S

sup
xn
1

R(xn1 ) ≥ inf
s∈S

Exn
1
[R(xn1 )] ,



we obtain the lower bound for the regret as follows

inf
s∈S

Exn
1
[R(xn1 )] = E

[
(x[t]− (2θ̂ − 1)fn(x

t−1
t−a))

2
]

− E
[
(x[t]− (2θ − 1)fn(x

t−1
t−a))

2
]
,

where we have the optimal sequential predictor in the follow-
ing form

θ̂ = E[θ|xt−11 ].

After some algebra we achieve

inf
s∈S

Exn
1
[R(xn1 )] = −4E[θ̂x[t]fn(x

t−1
t−a)]

+ 4E[θx[t]fn(x
t−1
t−a)] + E[(2θ̂ − 1)2]− E[(2θ − 1)2].

(13)

Now considering the first term of (13), we observe that

θ̂ = E[θ|xt−11 ] =
t− 2− Ft−2 + C

t− 2 + 2C
,

where Ft−2 is the total number of transitions between the two
states in a sequence of length (t−1), i.e., θ̂ is ratio of number
of transitions to time period. Hence,

E[θ̂ x[t] fn(x
t−1
t−a)] = E

[
t− 2− Ft−2 + C

t− 2 + 2C
x[t] fn(x

t−1
t−a)

]
=

t− 2 + C

t− 2 + 2C
E[x[t] fn(x

t−1
t−a)]

− 1

t− 2 + 2C
E[Ft−2 x[t] fn(x

t−1
t−a)]

= − 1

t− 2 + 2C
E[(1− θ)(t− 2)x[t] fn(x

t−1
t−a)]

=
t− 2

t− 2 + 2C
E[θ x[t] fn(x

t−1
t−a)],

where the third line follows since

E[x[t]fn(x
t−1
t−a)] = E[(2θ − 1)A2] = 0,

and
E[Ft−2|x[t]fn(xt−1t−a)] = (t− 2)(1− θ),

since Ft−2 is a binomial random variable with parameters
(1− θ) and size (t− 2). Thus, we obtain

inf
s∈S

Exn
1
[R(xn1 )] = −4

t− 2

t− 2 + 2C
E[θx(t)fn(x

t−1
t−a)]

+ 4E[θx(t)fn(x
t−1
t−a)] + E[(2θ̂ − 1)2]− E[(2θ − 1)2].

After this line the derivation follows similar lines to Theorem
3 of [3], which results in

inf
s∈S

Exn
1
[R(xn1 )] ≥ O(ln(n)).

This concludes the proof of Theorem 2. �

4. CONCLUDING REMARKS

In this paper, we consider the problem of sequential pre-
diction from a mixture of experts perspective. We intro-
duce comprehensive lower bounds on the sequential learning
framework by proving that for any sequential algorithm, there
always exists a sequence for which the sequential predictor
cannot outperform the class of parametric predictors, whose
parameters are set non-casually. We then consider a specific
type of parametric predictors (i.e., separable parametric pre-
dictors), where we emphasize that this class of predictors
are still a comprehensive one, e.g., all linear and polynomial
predictors are subsets of separable parametric predictors. In
this framework, we transform the prediction problem to a
parameter estimation problem and show that there always
exists a sequence such that the regret of a sequential predictor
is lower bounded by O(ln(n)).
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