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ABSTRACT

Sensible and reliable incipient fault detection methods are

major concerns in industrial processes. The Kullback Leibler

Divergence (KLD) has proven to be particularly efficient.

However, the performance of the technique is highly depen-

dent on the detection threshold and the Signal to Noise Ratio

(SNR). In this paper, we develop an analytical model of the

fault detection performances (False Alarm Probability and

Miss Detection Probability) based on the KLD including the

noisy environment characteristics. Thanks to this model, an

optimization procedure is applied to set the optimal fault de-

tection threshold depending on the SNR and the fault severity.

Index Terms— Fault detection, performance modeling,

Optimization, Kullback-Leibler Divergence, Principal Com-

ponent Analysis.

1. INTRODUCTION

Fault detection plays a key role in enhancing today’s techno-

logical systems high demands for performance and security.

In such systems, minor faults can result in catastrophic con-

sequences, where the huge need for very sensitive fault de-

tection and diagnosis (FDD) methods. Such methods must

be insensitive to the environment evolution (noise, tempera-

ture,...) but also to input changes. In the opposite, they have to

be very sensitive to the fault severity [1]. For industrial pro-

cess monitoring, it is crucial to be able to detect very small

faults (namely incipient modification) without stopping the

process. Thus, it allows to prevent the subsequent occurrence

of more catastrophic events. However, working with these

incipient faults, leads to a big difficulty in distinguishing the

fault itself from noise or environmental changes. Indeed, this

can affect the performance of the detection method in term of

false alarm probability (reliability) and miss alarm probabil-

ity (sensitivity).

Process-history based methods are very commonly used for

fault detection and diagnosis, which do not assume any form

of physical model structure [2]. They rely only on process

historical data. However, faults occurring in a process can be

effectively detected and diagnosed with only few variables.

Since each variable characterises a fault in a different manner,

one variable will be more sensitive to certain faults and less

sensitive to other ones. This motivates using multiple process

monitoring variables, with the proficiency of each variable de-

termined for the particular process and the possible faults at

hand.

With a large amount of variables measured and stored au-

tomatically, multivariate statistical monitoring methods have

become increasingly common in process industry. Specif-

ically, Principal Component Analysis (PCA)-based process

monitoring methods have gained wide application in indus-

tries. PCA-based monitoring methods can easily handle high

dimensional, noisy and highly correlated data generated from

industrial processes, and provide superior performance com-

pared to univariate methods. In addition, these process moni-

toring methods are attractive because they only require a good

historical data set of healthy operation, which are easily ob-

tainable for computer-controlled industrial processes. The

PCA can be used to reduce the m dimensional space of pro-

cess variables to a lower l -dimensional subspace termed the
principal subspace [3].

The most common procedure of process monitoring by PCA

is to use T 2 and Q statistics to detect process faults exhibited

in the latent variables and the residuals. The Kullback-Leibler

Divergence (KLD) has been shown as alternative to the T 2

and SPE criteria for the detection of incipient faults under

the PCA framework [4].This measure has been also used for

abnormality detection and pattern recognition in different ar-

eas. Compared to existing work in the literature, it has been

shown that the monitoring strategy with KLD under PCA is

conceptually more straightforward and it is also more sensi-

tive in detecting incipient fault [4], [5]. Indeed, the detection

of this kind of faults is more complex with nuisance parame-

ters [6]. In this paper, we propose to evaluate the performance

of the KL divergence in such environment.

The performances of the method are dependent on the inter-

nal parameters (named as hyperparameters) but also on the

process environment [7]. We propose here to develop a theo-

retical model of the performances. Then a deterministic opti-

mization algorithm is used to obtain the optimized detection

according to the fault severity and noise level.



2. INCIPIENT FAULT DETECTION METHOD

2.1. Notation

Let’s introduce the following notations:

Let us set X[N×m] such as X = (x1, ..., xj , ..., xm) =

(xij)i,j is the original data matrix where xj = [x1j ...xNj ]
′

is

a column vector of N measurements taken for the jth vari-

able.

X̄[N×m], where X̄ = (x̄1, ..., x̄j , ..., x̄m) is the centered ma-
trix; each column ofX is subtracted from its mean value.

S is the sample data covariance matrix.

P[m×m], such as P = (p1, ..., pl, ...pm) is the loading eigen-
vectors matrix.

T[N×m], where T = (t1, ..., tl, ..., tm) is the scores matrix
given by T = X̄P
l is the dimension of the principal subspace and the number
of latent scores as well.

λ1, ..., λl in the descendant order, are the variances of the

latent scores and the eigenvalues associated respectively to

p1, ..., pl.
a is the fault amplitude parameter.
v[N×m] is the noise matrix .

The star mark (*) refers to the healthy and noise-free case.

2.2. Fault detection procedure reminder

The general procedure of statistical monitoring is to collect a

large number of healthy data samples used as reference data

set. The measured data are then compared to the healthy ones

to check whether abnormal conditions occur.

Since principal components are concerned with variances, the

information supplied by the data lies within the distributions

along the principal components axes. Therefore, monitoring

probability distributions of the latent scores, which represent

the data projection onto the l principal components, will be

able to reveal small changes caused by incipient faults. So,

once the PCA’s model is established, a reference probabil-

ity distribution is estimated for each latent score. Then for

each new set of observations, the associated latent scores are

calculated through the PCA’s model. A natural idea consists

in measuring the difference between the probability density

functions of healthy data and measured ones.

2.2.1. Kullback-Leibler Divergence for Detection

The difference between the probability density functions of

healthy data and test data can be achieved by the KLD com-

putation between the two distributions [8].

For discrimination between two continuous probability den-

sity functions (pdfs) f(x) and g(x) of a random variable x,
the Kullback-Leibler Information (KLI) is defined as:

I(f‖g) =
∫

f(x) log
f(x)

g(x)
dx. (1)

The KL Divergence (KLD) is then defined as the symmetric

version of the KL Information [8], [9]:

KLD(f, g) = I(f‖g) + I(g‖f). (2)

2.2.2. KLD approximation by Monte Carlo Simulation

For arbitrary distributions f and g, (1) can be numerically ap-
proximated using Monte Carlo (MC) simulation. The Monte

Carlo method expresses (1) as the expectation of log(f/g),
under the pdf f . Using ns i.i.d samples {zi}

ns
1 drawn from f ,

it consists in calculating

DMC(f, g) =
1

ns

ns
∑

i=1

log
f(zi)

g(zi)
(3)

The estimation error is normal with variance σ2
MC and zero

mean (∼ N (0, σ2
MC)) such as σ

2
MC = 1

ns
V ARf [log(f/g)].

2.3. KLD theoretical model for fault detection

For normal densities f and g such that f ∼ N (µ1, σ
2
1) and

g ∼ N (µ2, σ
2
2), where µ1, µ2 are the means and σ2

1 , σ
2
2 are

the variances for f and g respectively, the Kullback-Leibler

Divergence between f and g is given by:

KLD (f, g) =
1

2

[

σ2
2

σ2
1

+
σ2
1

σ2
2

+ (µ1 − µ2)
2

(

1

σ2
1

+
1

σ2
2

)

− 2

]

(4)

A simple and light computational expression of the diver-

gence is obtained assuming that the measurements vector

X = [x1, x2, ..., xm] is m−variate normally distributed. So
principal component scores, which are linear combinations

of the original variables, are also normally distributed. How-

ever, by contrast to the last (m − l) residual scores (the data
projection onto the residual subspace), the latent ones have

large variances so that their distributions are far from being

degenerated. Therefore, the divergence is strongly related to

the principal subspace.

From the assumption of normality, it follows that each of

the l principal scores tk, (k = {1, 2, ..., l}), has a pdf which
we denote f such that f ∼ N (0, λk). We propose to com-

pare f against its reference. The reference is denoted f∗,

f∗ ∼ N (0, λ∗

k). It is totally described by the eigenvalue

λ∗

k which refers to the PCA’s model. The mean of the dis-

tribution is supposed unchanged (zero) after the noise and

fault occurrence, because we assume that a noise and a fault,

particularly an incipient one, will not move the centre of

the PCA’s model. This assumption has been made with the

detection of subspace changes approach. Then, we can write:

λk = λ
∗

k +∆λ
a
k +∆λ

v
k (5)

where ∆λa
k is the eigenvalue bias caused by the fault occur-

rence. The fault affecting the jth variable xj among the m

process variables is considered as an additive bias of ampli-

tude on this variable with factor a, occurring within the sam-
pling interval [b, c].



and∆λv
k is the eigenvalue bias caused by the noise presence.

By specializing (4) to the case considered, the divergence be-

comes:

KLD (f, f∗) =
1

2

[

(∆λa
k +∆λv

k)
2

λ∗

k (λ
∗

k +∆λa
k +∆λv

k)

]

(6)

The fault is characterized by its amplitude a, the noise by the
vector vk. p

∗

k is the kth loading eigenvector associated to λ
∗

k,

they refer to the PCA’s model for which a = 0 and vk = 0.
From (6), the theoretical model of the KLD can be for-

mulated. Finally, the theoretical expression of the divergence

between the pdf of the kth principal score and its reference,
depending on the fault amplitude parameter a is hence given,
from (6), as (7). In (7) δr, γv, δj and σ are constants indepen-

dent of the fault parameter. δr, δj and σ are given in function

of the original variables, which are not faulty and not noisy,

and the fault-free measurements of the variable xj as well,

and γv is given in function of the original variable xj and the

noise v. The computation of these constants requires how-

ever the knowledge of the faulty interval [b, c]. The details are
given in [6].

The eigenvalue bias caused by the noise presence var(v×p∗k)
can be expressed in function of the Signal to Noise Ratio

(SNR) as:

var (v × p
∗

k) =

(

m
∑

i=1

pik

)2

∗ Ps

10(SNR/10)
(8)

Where Ps is the signal power.

Moreover, the variable γv is equal to zero if we suppose that
the noise present in the system is an additive white gaussian

noise (γv =
∑c

i=b x
∗

ijvij −
1
N

∑c

i=b x
∗

ij

∑N

i=1 vij) [6]. Then,
substituting var(v × p∗k) by it’s expression in (7) and replac-
ing γv by 0, the KLD model becomes (9).

With the healthy case (a = 0), the KLD model (9) be-

comes:

KLDM0 (f, f
∗) =

1

2

(

(
∑m

i=1 pik
)2 ∗ Ps

10(SNR/10)

)2

λ∗

k

(

λ∗

k +
(
∑m

i=1 pik
)2 ∗ Ps

10(SNR/10)

)

(10)

To detect the fault occurrence, the value of the KLD is com-

pared to a threshold h. If the KLD surpasses h, an alarm

is signaled. In the past work, the choice of h is set to

h = KLDM0 +α ∗ σMC0 with α = 2 arbitrarily fixed. The
goal of the following work is to find the optimal detection

threshold (optimal α value) in a noisy environment.

3. PERFORMANCE ANALYSIS

3.1. Performance Modeling

A key issue in fault detection method is to state the signif-

icance of the observed deviation (fault) with respect to ran-

dom noises, deterministic uncertainties (also called nuisance

parameters [1]. A main challenge of the statistical methods is

their ability to handle noises and uncertainties, to reject nui-

sance parameters, to decide between two hypothesis H0 (no

faults a = 0) andH1 (there exists a fault a 6= 0).
The performance of the hypothesis test is characterized by

False Alarm Probability (PFA) and the Miss Detection Prob-

ability (PMD). These criteria depend on the test threshold h,
the noise level in the system and the fault severity.

PFA = P(KLD > h | H0) (11)

PMD = P(KLD < h | H1) (12)

To calculate the false alarm and miss detection probabilities,

the law of the KLD variation should be known. However,

the estimation of the KLD by the Monte carlo simulation as-

sumes that the KLD has a gaussian variation. To validate

this assumption, the Kolmogorov-Smirnov test is applied on

a set of KLD calculated for the same noise and fault levels.

The test results confirm the assumption that the KLD has a

gaussian variation (confidence limit 95%). Then KLD ∼
N (KLDM , σ2

mc), whereKLDM is the value of the theoret-

ical model and σ2
mc is the variance of the Monte Carlo esti-

mation. The probability density function (pdf) of the KLD is

then:

f(x) =
1

σmc

√
2π

e
−

(x−KLDM )2

2σ2
mc (13)

The probability density function of the KLD under H0 is

f0(x) where KLDM = KLDM0 is the theoretical value in

the fault-free or healthy case (a = 0) and σmc = σmc0 is the

corresponding standard deviation. Under H1 the KLD Pdf is

f1(x) where KLDM = KLDM1 is the theoretical value in

the faulty case (a 6= 0) and σmc = σmc1 is the corresponding

standard deviation.

Now, from (13), the expressions of the False Alarm Probabil-

ity (PFA) and Miss Detection Probability (PMD) are:

PFA = P(KLD > h | H0) = 1−
∫ h

−∞

f0(x)dx (14)

PMD = P(KLD < h | H1) =

∫ h

−∞

f1(x)dx (15)

However, the cumulative distribution function of the gaus-

sian law doesn’t exist, so to calculate PFA and PMD , the Tay-

lor approximation is used:

f(x) ≃ R(x, c, n) =

Nt
∑

n=0

f (n)(c)

n!
(x− c)n (16)

The methodology to calculate PFA and PMD is:

1. Choose the lower limit ξ such that f(x) = 0, if x ≤ ξ.

2. Create a partition C with β elements in the interval [ξ, x]
such as C = {c1, c2, ..., cβ} with step 2d = x−ξ

β
.

3. Choose the Taylor function orderNt



KLDM (f, f∗) =
2

N2

(

pjk
∑m

r=1 (δr + γv) prk × a+ 1
2
p2jkσ × a2 + N

2
var (v × p∗k)

)2

λ∗

k

(

λ∗

k + 2
N

(

pjk
∑m

r=1 (δr + γv) prk
)

× a+ 1
N
p2jkσ × a2 + var (v × p∗k)

) (7)

KLDM (f, f∗) =
2

N2

(

pjk
∑m

r=1 δrprk × a+ 1
2
p2jkσ × a2 + N

2

(
∑m

i=1 pik
)2 ∗ Ps

10(SNR/10)

)2

λ∗

k

(

λ∗

k + 2
N

(

pjk
∑m

r=1 δrprk
)

× a+ 1
N
p2jkσ × a2 +

(
∑m

i=1 pik
)2 ∗ Ps

10(SNR/10)

) (9)

Thus, applying this methodology, we obtain:

=⇒

∫ ci+d

ci−d

f(x)dx ≃

∫ ci+d

ci−d

R(x, ci, Nt)dx

= f(ci)(x − ci) +
f ′(ci)

2
(x− ci)

2 + ...

...+
f (Nt+1)(ci)

(Nt + 1)!
(x − ci)

Nt+1 |ci+d
ci−d

= f(ci)(2d) +
f ′′(ci)

6
(2d)3 + ...+

f (Nt)(ci)

(Nt + 1)!
(2d)Nt+1

=⇒

∫ x

−∞

f(x)dx ≃

β∑
i=1

Nt∑
2j+1=0

f (2j)(ci)

(2j + 1)!
(2d)2j+1

ChoosingNt = 3, we obtain:

PFA = 1−
β
∑

i=1

(

f0 (ci) .
h− ξ

β
+

f ′′

0 (ci)

6
.

(

h− ξ

β

)3
)

(17)

PMD =

β
∑

i=1

(

f1 (ci) .
h− ξ

β
+

f ′′

1 (ci)

6
.

(

h− ξ

β

)3
)

(18)

Substituting f0 and f1 by their expressions, we obtain

the model of the performance with respect to threshold, fault

severity and SNR in (19) and (20). Note that the fault severity

and SNR are included in theKLDM expression.

Setting a high threshold improves the PFA but degrades

the PMD and setting a low value improves the PMD and de-

grades the PFA. Therefore, both criteria are combined to de-

sign a COST function that will be optimized.

To combine the two criteria, we define the cost function such

as COST = PFA + PMD [10]. The variation of the COST

with respect to the threshold factorα such as h = KLDM0+
α ∗ σMC0 is studied according to the fault severity a and the
environment noise influence. To show the effect of the noise

level on the detection capability, it has to be compared to the

fault amplitude, this is done using the Fault to Noise Ratio

(FNR) [4], [6] defined as FNR = 10log(
Pf

Pv
). Where Pf is

the fault power and Pv is the noise power. The COST varia-

tion with α and FNR is obtained from the theoretical perfor-

mance model and plotted in Fig.1. Note that these results are

obtained using β = 6 in the COST function.

As seen in Fig.1, the performances of the fault detection

methods depend strongly on the choice of the threshold de-

tection.
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Fig. 1. COST variation along with FNR and Threshold factor

3.2. Performance Optimization

Searching the best tuning of the detection threshold is formu-

lated as an optimization problem, where the cost function is

that obtained in the previous section. Since we have a theo-

retical model of the cost function, a deterministic algorithm

of optimization can be applied. In this paper, as the COST

function has not several local minima, the descent gradient

method is suitable.

Gradient descent is an algorithm for finding the nearest local

minima of a function which presupposes that the gradient of

the function can be computed. In Fig.2, the progress of the

optimization algorithm is displayed as an example for 3 dif-

ferent FNR (FNR=[0dB, -3dB, -6dB]), showing that for each

FNR an optimum α value can be found. Fig.3 shows the evo-

lution of the optimal threshold factor α for each FNR with the

associated COST: the α value increases along with the FNR

value but becomes quite constant for FNR values higher than

1dB. In the opposite the COST function decreases along with

the FNR and becomes almost null for FNR higher than 1dB.

As it can be seen in Fig.3, if FNR=0dB, the usual setting of

α = 2 is justified. However for lower values of the FNR,

one can see that a suitable optimized threshold value can be

obtained to guarantee the best compromise between PFA and

PMD . Therefore, with the FDD technique and the analytical

model, the reliability and the sensitivity can be tuned opti-

mally.



PFA = 1−
β
∑

i=1

(

1

σmc0

√
2π

e
−

(ci−KLDM0)
2

2σ2
mc0 .

h− ξ

β
+

−1

σ2
mc0

(

1− (ci −KLDM0)
2

σ2
mc0

)

.
1

σmc0

√
2π

e
−
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2

2σ2
mc0 .

(

h− ξ

β

)3
)

(19)

PMD =

β
∑

i=1

(

1

σmc1

√
2π

e
−

(ci−KLDM1)
2

2σ2
mc1 .

h− ξ

β
+

−1

σ2
mc1

(

1− (ci −KLDM1)
2

σ2
mc1

)

.
1

σmc1

√
2π

e
−

(ci−KLDM1)
2

2σ2
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(20)
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4. CONCLUSION

This paper described the application of an optimal tuning

methodology of the detection threshold for the Kullback-

Leibler Divergence (KLD) method. The idea is to consider

this problem as an optimization problem with a cost function

defined as the performance response to a choice of detection

threshold and environment conditions. A theoretical evalua-

tion of the KLD allows establishing a performance theoretical

model. Then, a deterministic optimization algorithm (descent

gradient) is applied. The results of the optimization show that

an optimal tuning of the detection threshold can be obtained

to improve the performances of the detection method even

while the environment noise level is higher than the fault

severity power.
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