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ABSTRACT

It has been shown that the Bayesian optimal approximate

message passing (AMP) technique achieves the minimum

mean-squared error (MMSE) optimal compressed sensing

(CS) recovery. However, the prerequisite of the signal prior

makes it often impractical. To address this dilemma, we pro-

pose the parametric SURE-AMP algorithm. The key feature

is it uses the Stein’s unbiased risk estimate (SURE) based

parametric family of MMSE estimator for the CS denoising.

Given that the optimization of the estimator and the calcu-

lation of its mean squared error purely depend on the noisy

data, there is no need of the signal prior. The weighted sum of

piecewise kernel functions is used to form the parametric es-

timator. Numerical experiments on both Bernoulli-Gaussian

and k-dense signal justify our proposal.

Index Terms— Compressed sensing, approximate mes-

sage passing, SURE estimator, denoising

1. INTRODUCTION

The analysis of the approximate message passing (AMP)

technique suggests that the compressed sensing (CS) recon-

struction can be interpreted as a recursive denoising problem:

for each iteration, we observe a data set which is the origi-

nal signal corrupted by some white noise [1]. The ℓ1-AMP

algorithm, behaving like LASSO, is proved to have a robust

reconstruction that is invariant to the signal prior px(x) [1,2].

It iteratively solves a 1-d denoising that is minimax with re-

spect to the pdf from which x is drawn. However, in CS we

do not have only one but many parallel 1-d denoising prob-

lems. In contrast, Bayesian optimal AMP (BAMP) achieves a

minimum mean squared error (MMSE) optimal performance

by incorporating px(x) with the denoising procedure [3, 4].

However, the requirement of px(x) to be known in advance

can be restrictive. The benefit of using the density infor-

mation and the fact that all noisy data naturally form a pdf

motivate us to find an alternative reconstruction approach that

performs as well as BAMP yet without the need of the signal

prior.
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Towards this end, we propose the parametric SURE-AMP

algorithm. The fundamental idea is to replace theMMSE esti-

mator in BAMP with a Stein’s unbiased risk estimate (SURE)

based [5] parametric least square estimator. The virtue of the

parametric estimator is that its optimization and MSE could

be reformulated purely as a sample average of the corrupted

data. In our work, we choose a parametric family of MMSE

estimators to be the piecewise linear kernel functions. Most

importantly, the kernel structures are not specifically designed

to fit the signal prior but are inspired from its general spar-

sity pattern. The numerical experiments with both Bernoulli-

Gaussian and k-dense data show that with a limited number

of kernels, we are able to capture the evolving shape of the

MMSE estimator in the AMP iteration.

The fact that signal distributions are rarely known a pri-

ori has been noticed and a number of AMP-based algorithms

have been proposed to tackle this problem. In [4, 6–8], the

mixture of Gaussians is used as the parametric representa-

tion for px(x) and the expectation-maximization (EM) ap-

proach is deployed to jointly learn the prior along with the

estimation x. Later in [9], the authors introduced an adaptive

AMP framework which is not limited to the sum of Gaussians

model. The key difference between the EM-GAMP and our

proposal is that we resort to a parametric family of MMSE

estimators instead of fitting the prior. The experiments sug-

gest when the signal prior is easy to imitate, our parametric

SURE-AMP serves as an alternative with an equivalent per-

formance as EM-GAMP. When the signal prior is difficult to

be approximated as the finite sum of Gaussians, parametric

SURE-AMP provides a better solution.

Notation: For the rest of the paper, we use boldface capi-

tal letters e.g. A, to represent matrices, and AT to denote the

transpose. We use boldface small letters like x to denote vec-

tors and xi to represent its ith element. For a vector x ∈ R
n,

we use < x >= 1

n

∑

i xi to represent its average.

2. PARAMETRIC SURE-AMP FRAMEWORK

We consider the standard CS setting: y = Φx + w, with

Φ ∈ R
m×n, γ = m

n
< 1 and w ∼ N (w;0, σ2

w
). In this sec-

tion, we start with a simplified formulation of the Bayesian

optimal AMP algorithm. Then we introduce the parametric



SURE estimator as a suitable surrogate for the MMSE esti-

mator in the BAMP framework. Finally we present the para-

metric SURE-AMP algorithm.

2.1. Bayesian optimal AMP revisit

The intuitive idea behind the AMP algorithm is that for each

iteration, we observe a white noise corrupted signal µ =
x + s, s ∼ N (s; 0, σ2

s). The reconstruction procedure is a

recursive denoising problem until the noise variance σ2
s is de-

creased to a satisfactory level. Given the accurate prior px(x),
the denoising is performed point-wise with the MMSE esti-

mator in BAMP:

F (µi; σ
2
s) = Ex|µ(x|µ = µi, σ

2
s) (1)

and the conditional variance of x given that µ = µi is defined

as:

G(µi; σ
2
s) = Varx|µ(x|µ = µi, σ

2
s) (2)

It has been shown in [10] that for additive Gaussian noise,

the optimal least square estimator F (; ) can be expressed en-

tirely as a function of the noisy data.

F (µi; σ
2
s) = µi + σ2

s

p′
µ
(µi)

pµ(µi)
(3)

By leveraging the property of the MMSE estimator (3) and

with some straightforward calculations, we have the follow-

ing relationship between F (; ) and G(; ) for any Gaussian

noise corrupted data.

F ′(µ; σ2
s) =

1

σ2
s

G(µ; σ2
s) (4)

Putting (4) into the generic BAMP algorithm [3,4,11], we

have the simplified BAMP algorithm, as summarized below.

Algorithm 1 : Simplified Bayesian optimal AMP

1: initialization: x0 ← 0, z0 ← y, c0 > σ2
x

2: for t = 1, 2, · · · do
3: µt = ΦT zt + xt

4: xt+1 = F (µt; ct)
5: νt+1 =< G(µt; ct) >

6: zt+1 = y −Φxt+1 + νt+1

γct zt

7: ct+1 = σ2
w + νt+1

γ

8: end for

The key yet impractical component of BAMP is the re-

quirement of the signal prior in order to define F (; ) andG(; ).
However, the AMP theory works in the large scale limit with

x tending to some empirical distribution. In this case, the

noisy estimates also follow an (observed) empirical distribu-

tion pµ(µ) which we have access to. Thus the blindness of

px(x) should not prevent us from achieving performance on

par with the MMSE recovery. This motivates us to find a

proper substitution of F (; ).

2.2. Parametric SURE estimator

We resort to a SURE-based parametric approximation of the

MMSE estimator in the BAMP algorithm. SURE is a statis-

tically unbiased estimator of the mean squared error (MSE)

of an arbitrary estimator [5]. Since the MMSE estimator can

be reformed as (3), we consider a family of estimators fθ ,

parameterized by the vector θ:

fθ(µ; σ2
s) = µ + gθ(µ; σ2

s) (5)

It has been shown in [5] that for the Gaussian noise corrupted

data, the SURE estimate of fθ(; ) can be expressed as an ex-

pectation over the noisy observation:

ν =Ex,µ[(x − fθ(µ; σ2
s))2] (6)

=σ2
s + Eµ[g2

θ(µ; σ2
s) + 2σ2

sg′θ(µ; σ2
s)] (7)

In practice, the expectation can be approximated with the

average over the observation µ. We can therefore use (7) to

optimize θ as in [10, 12].

θ̂ = arg min
θ

< g2
θ(µ; σ2

s) + 2σ2
sg′θ(µ; σ2

s) > (8)

2.3. Parametric SURE-AMP

With fθ(; ) and ν solely depending on the noisy data, they can

serve as a natural alternative of the MMSE estimator in the

BAMP framework. Thus we present the parametric SURE-

AMP algorithm below.

Algorithm 2 : Parametric SURE-AMP

1: initialization: x0 ← 0, z0 ← y, c0 > σ2
x

2: for t = 1, 2, · · · do
3: µt = ΦT zt + xt

4: xt+1 = fθ(µ
t; ct)

5: νt = ct+ < g2
θ(µ

t; ct) + 2ctg′θ(µ
t; ct) >

6: zt+1 = y −Φxt+1 + νt+1

γct zt

7: ct+1 = σ2
w + νt+1

γ

8: end for

The critical part is to find the proper parameter family to

capture the evolving shape of the MMSE estimator. In our

work, we choose the piecewise linear estimator.

3. COMPRESSED SENSING EXAMPLES

The reconstruction quality of the parametric SURE-AMP pri-

marily counts on how accurately fθ(; ) can approximate the

MMSE estimator F (; ). The common practice is to form the

SURE estimator as a weighted sum of some kernel functions:

In [10], authors used the ”bump” functions as the kernels.

In [12], exponential kernels are exploited. In this work, we

choose the piecewise linear functions and show their effec-

tiveness through the denoising of the Bernoulli-Gaussian and

k-dense data.
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Fig. 1. Piecewise linear kernel functions, as used for linear

parameterization of SURE: (a) Bernoulli-Gaussian signal (b)

k-dense signal.

3.1. Bernoulli-Gaussian signal

For Bernoulli-Gaussian data, x is drawn i.i.d from the pdf

pBG(x) = λN (x; 0, 1) + (1− λ)δ(x) (9)

We build a linearly parameterized estimator of the form:

fBG(µ) = a1ϕ1(µ) + a2ϕ2(µ) + a3ϕ3(µ) (10)

with the kernel functions being

ϕ1(µ) =



















0 µ ≤ −2α1, µ ≥ 2α1

− µ
α1
− 2 −2α1 ≤ µ ≤ −α1

µ
α1

−α1 ≤ µ ≤ α1

− µ
α1

+ 2 α1 ≤ µ ≤ 2α1

(11)

ϕ2(µ) =































−1 µ ≤ −α2

µ+α1

α2−α1
−α2 < µ < −α1

0 −α1 ≤ µ ≤ α1

µ−α1

α2−α1
α1 < µ < α2

1 µ ≥ α2

(12)

ϕ3(µ) =











µ + α2 µ ≤ −α2

0 −α2 < µ < α2

µ− α2 µ ≥ α2

(13)

The hinge points α1 and α2 very much characterize the

shape of the kernel function ϕi(µ). We adopt the recommen-

dation in [13] and fix the hinge points to be proportional to

the standard deviation of the noise

α1 = 2σs α2 = 4σs (14)

Thus the denoising function fBG(·) only depends linearly on

the parameter set θBG = [a1, a2, a3]. The exact optimization

of θBG is straightforward because the MSE estimate (7) has a

quadratic form. Taking the derivative of theMSE with respect

to ai and setting to zero we have

dν

dai

= 2 < gθ(µ; σ2
s)ϕi(µ; σ2

s) > +2σ2
s < ϕ′

i(µ; σ2
s) >= 0

(15)
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Fig. 2. MMSE estimator and parametric SURE for the noisy

Bernoulli-Gaussian data. The noise variance σ2
s is 0.1. Hinge

points are 0.64 and 1.26. The MSE for the MMSE estimator,

the parametric SURE and the estimation using (7) are 0.0204,
0.0216 and 0.0222.

which leads to
∑

k

< ϕk(µ; σ2
s)ϕi(µ; σ2

s) > ak = −σ2
s < ϕ′

i(µ; σ2
s) >

(16)

The summary of these equations form a linear system which

can be solved directly via a simple matrix inversion.

Fig. 1.(a) is a plot of the kernel functions for the

Bernoulli-Gaussian data. Fig. 2 illustrates both the MMSE

estimator and its optimized-SURE approximation. We can

see that the simple form of piecewise linear function is good

enough to capture the key structure of the MMSE estimator.

3.2. K-dense signal

In this section we consider the k-dense signal which is a mix-

ture of continuous and discrete elements.

pKD(x) =
(1 − λ)

2
δ(x + 1) +

(1− λ)

2
δ(x− 1) + λU(−1, 1)

(17)

where U(a, b) denotes uniform distribution in the interior

(a, b). The recovery of the noisy under-determined linear

observation for such model is investigated in [1, 14]. It is

proved that we need γ > 0.5 to make the recovery possible

with linear programming. We observed a similar behavior for

BAMP with Gaussian Φ. However the reconstruction quality

is significantly improved.

The parametric estimator for the k-dense signal are

formed as

fKD(µ) = b1φ1(µ) + b2φ2(µ) (18)

where φ1 and φ2 is defined as:

φ1(µ) =











−1 µ ≤ −β1

µ
β1

−β1 < µ < β1

1 µ ≥ β1

(19)



φ2(µ) =































−1 µ ≤ −β2

µ+β1

β2−β1
−β2 < µ < −β1

0 −β1 ≤ µ ≤ β1

µ−β1

β2−β1
β1 < µ < β2

1 µ ≥ β2

(20)

For the k-dense signal, the parameter vector θKD has both

linear (kernel weight) and nonlinear (hinge point) elements

to be optimized. We resort to the gradient descend method

to solve this problem. The optimization is not easy though,

since the objective function ν(b1, b2, β1, β2) is not convex and
possesses a lot of local minimas. To tackle this problem, we

set up a searching grid for the starting position of the hinge

points β1, β2 and choose the one delivers the least MSE.

1: for each starting point β0
1 , β

0
2 do

2: for t = 1, 2, · · · do
3: bt

1, b
t
2 ∈ argminb1,b2

ν(βt−1

1 , βt−1

2 , b1, b2)

4: βt
1 ∈ arg minβ1

ν(β1, β
t−1

2
, bt

1, b
t
2)

5: βt
2 ∈ arg minβ2

ν(βt
1, β2, b

t
1, b

2
2)

6: end for

7: end for

The kernel functions for constructing the k-dense para-

metric SURE estimator are presented in Fig.1.(b). The

MMSE estimator and SURE approximation for the k-dense

signal are shown in Fig. 3. When implementing the para-

metric SURE-AMP, the region of the searching grid can be

reduced over the AMP iteration, with the optimal hinge posi-

tion from the previous iteration being the maximum searching

point in the grid.

One thing worth noting is that the kernel structures are

not specially designed to fit the Dirac and uniform combina-

tion. They are constructed based on the sparsity pattern (the

position of the Dirac function). We believe these kernel struc-

tures are suitable for other k-dense models with the continu-

ous components follow any smooth pdf.

4. SIMULATION

In this section, the reconstruction performance of the para-

metric SURE-AMP is reported for the CS noisy Bernoulli-

Gaussian and k-dense data. For all experiments, we fixed

n = 10000, λ = 0.1 and each numerical point is an average

of 100Monte Carlo iterations. The noise level in the measure-

ment domain is known and quantified as SNRy = 10 log10 ‖
Φx ‖22 / ‖ w ‖22. The reconstruction quality is evaluated in

terms of the signal to noise ratio in the signal domain, defined

as SNRx = 10 log10 ‖ x ‖22 / ‖ x̂− x ‖22.
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Fig. 3. MMSE estimator and parametric SURE for the noisy

k-dense data. The noise variance σ2
s is 0.1. Hinge points

are 0.62 and 0.81. The MSE for the MMSE estimator, the

parametric SURE and the estimation using (7) are 1.810 ×
10−3, 1.825× 10−3 and 1.737× 10−3.

4.1. Bernoulli-Gaussian

In [6], the authors have demonstrated that the EM-GM-AMP

algorithm achieves the state-of-art performance compared to

most of the existing CS algorithms that are blind to the sig-

nal prior. For comparison, we show the performance of the

proposed parametric SURE-AMP, EM-GAMP, LASSO (via

SPGL1 [15]) and BAMP (with true pBG(x)) in Fig. 4. For

LASSO, we used the same setting as described in [6]. The

noise level is SNRy = 26 dB.

As shown in Fig. 4, parametric SURE-AMP exhibits sig-

nificant improvement over ℓ1 minimization: the more than

7 dB increase of SNRx demonstrates that exploring the den-

sity information indeed helps with CS reconstruction. Com-

pared to EM-GM-AMP, our proposal delivers very close per-

formance for γ between 0.36 and 0.5 and is roughly 0.5 dB

better for γ between 0.24 and 0.36. Parametric SURE-AMP

brings the sampling ratio breakpoint down to 0.24 while EM-

GM-AMP pushes it down to 0.22. When compared with the

BAMP result, parametric SURE-AMP exhibits nearly identi-

cal performance for γ larger than 0.36. In the small sampling

ratio regime, there is about 2 dB gap to fill. However, given

the hinge points are fixed for the parametric SURE-AMP in

this simulation, we believe it has the potential to improve

SNRx even further with proper scheme to optimize the hinge

points.

4.2. k-dense signal

Fig. 5 shows SNRx for noisy recovery of the k-dense sig-

nal with SNRy = 46 dB. Again we compare the paramet-

ric SURE-AMP with EM-GM-AMP, BAMP and convex op-

timization. The inverse incomplete linear system of the k-

dense signal forms a convex problem [14]: x̂ = argmin
x̃
‖

y − Φx̃ ‖2, s.t. ‖ x̃ ‖∞≤ 1, which can be solved with the



Fig. 4. Noisy Bernoulli-Gaussian CS recovery for different

schemes under different sampling ratio.
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Fig. 5. Noisy k-dense CS recovery for different schemes under

different sampling ratio.

gradient projection. For the EM-GM-AMP, we set he number

of Gaussian to be the maximum 20 to approximate pKD(x).

With all kernel weights and hinge points optimized, para-

metric SURE-AMP achieves a nearly optimal performance

for γ > 0.625: it is roughly 1.5 dB worse than BAMP. For

γ < 0.625, its performance diverges from the Bayesian opti-

mal curve due to the difficulty of locating the optimal hinge

points. Again we observe an overall improvement over the

convex minimization. The EM-GM-AMP algorithm expe-

riences a failure for γ < 0.725 and is around 5 dB worse

than the parametric SURE-AMP in the large sampling ratio

regime. It demonstrates that when approximating the prior

with Gaussian mixture models turns out to be a difficult task,

resorting to its MMSE estimator approximation can be an

ideal option.

5. CONCLUSION

In the paper, we present the parametric SURE-AMP algo-

rithm, a complementary scheme for the EM-GM-AMP algo-

rithm with the recovery quality approaching the Bayesian op-

timal. The selection of kernel functions plays a crucial role,

similar to the parametric prior family in the EM-GM-AMP.

Direction for further research would be: consider other para-

metric families, design better hinge selection scheme, and ap-

ply the parametric SURE-AMP to compressible signals.
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