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ABSTRACT
Machine Learning (ML) is a powerful tool to support the
development of objective visual quality assessment metrics,
serving as a substitute model for the perceptual mechanisms
acting in visual quality appreciation. Nevertheless, the reli-
ability of ML-based techniques within objective quality as-
sessment metrics is often questioned. In this study, the ro-
bustness of ML in supporting objective quality assessment
is investigated, specifically when the feature set adopted for
prediction is suboptimal. A Principal Component Regres-
sion based algorithm and a Feed Forward Neural Network
are compared when pooling the Structural Similarity Index
(SSIM) features perturbed with noise. The neural network
adapts better with noise and intrinsically favours features ac-
cording to their salient content.

Index Terms— image quality assessment, SSIM, neural
networks, machine learning

1. INTRODUCTION

Objective Visual Quality Assessment (OVQA) is an important
module in the maintenance of an acceptable Quality of Expe-
rience level in multimedia delivery systems [1]. For instance,
a video coding system requires the knowledge of video qual-
ity for appropriate bit allocation; similarly, post-processing
chains in displays need to estimate the quality of the incom-
ing video to calibrate and apply image restoration algorithms.

As natural signals, neighbouring samples of images and
videos are correlated, and can be well approximated by a first
order Markov process. Human visual perception mechanisms
are well equipped to only retain the useful signal information,
discarding the redundant information [2,3] for perceiving sig-
nal quality. However, incorporating such mechanisms into a
mathematical automated quality prediction algorithm (here-
after referred to as metric) is challenging. This is primarily
due to a limited understanding of the complex human percep-
tual mechanisms, and to the computational complexity that
their existing models typically entail. As a result, an efficient
metric that accurately mimics visual quality perception is yet
to be found, despite existing efforts [4, 5].

Recently, Machine Learning (ML) has been proposed as a
suitable tool to support OVQA [6, 7]. ML has been exploited

as a promising data-driven image and video feature pooling
strategy towards perceptual quality assessment, given that the
exact pooling mechanisms of the human visual system are be-
lieved to be complex [8]. Using ML, accurate OVQA models
of complex non-linear mechanisms have been developed in
a computationally tractable way and based on a limited set
of training examples [6], yet achieving high agreement with
subjective ground truth [6, 8, 9]. However, prediction accu-
racy must be tempered against the risk of overspecialisation,
caused by the high number of metric parameters set using the
training examples [10]. As a result, the robustness of ML-
based OVQA metrics is often questioned.

This paper does not assess either the accuracy or the ro-
bustness of specific ML-based OVQA metrics. It investigates
the valuable intrinsic feature selection ability of ML. Features
extracted from images or videos often carry either redundant
or non-relevant information, making the feature space noisy,
and consequently suboptimal, for accurate quality prediction.
This study shows how ML techniques can achieve high pre-
diction accuracy for quality estimation by filtering irrelevant
information from suboptimal spaces.

Due to the availability of labelled training data with
subjective ground truth quality assessments and clear bench-
marks, this study focuses on objective Image Quality As-
sessment. In particular, it uses SSIM (Structural Similarity
Index) [11] as a test tool for evaluating ML methods. SSIM
is a widely used metric based on the pooling of three compo-
nent features. These are particularly suitable for being used
as proxies for input features which could be corrupted in a
controlled manner. It must be stressed that other studies have
demonstrated that ML can improve on the performance of
SSIM, e.g. [12], whereas this is not the goal of the present
paper. Here, SSIM and benchmarks are used to investigate
the suitability of the use of ML for OVQA in the presence
of suboptimal conditions. A controlled study on the ML per-
formance with varied input feature adjustments is conducted.
The performance of a conventional metric using a linear com-
bination of input features is compared to a metric that uses a
neural network [10] to combine the same set of features into
an OVQA score. To simulate different levels of optimality
with which the feature space captures the human visual sys-
tem, noise is added directly to the SSIM component features.



The robustness of both metrics, based on increasingly noisy
feature spaces, is tested in predicting the quality of the images
in the LIVE database [13].

The remainder of this paper is organised as follows. Sec-
tion 2 details the setup of the metrics involved in the compar-
ison. Section 3 describes the addition of noise and the exper-
imental setup. Section 4 reports and discusses the test results
and is followed by concluding remarks in section 5.

2. MACHINE LEARNING FOR OBJECTIVE
QUALITY ASSESSMENT

Given an image i*, the goal of an image quality metric is
to predict the quality score q* perceived by the user observ-
ing i*. Such prediction is typically accomplished by deter-
mining a set of F features meaningful for perceptual qual-
ity f = {fj(i∗), j = 1, . . . , F} and then linking them to q*
through some function m. While in many cases the model m
is established a priori, (e.g., [14]) ML techniques allow m to
be determined in a data-driven way, i.e., based on a set of np
observations {il, ql}, l = 1, . . . , np, such that:

m(f(il)) = ql + εl, (1)

where εl is the estimation error [6].
The design of quality metrics builds on a selection and

characterisation of perceptual features (e.g. spatial, frequency
or temporal), which are used to compute a predicted quality
score (see eq. 1). SSIM, for example, combines three per-
ceptually relevant features, related to luminance (mean inten-
sity), contrast (variance) and structure (covariance) informa-
tion, into a quality score [11]. Quality prediction is achieved
by a multiplication of the features according to a predeter-
mined model m.

There are drawbacks with such a pooling model. First,
the functional form chosen (a parameterized multiplicative
model) is a priori and may not be the optimal one. Second,
there is no systematic way to determine the values of the 3
pooling parameters [11] (for the original SSIM implementa-
tion, all are equally weighted through parameters α = β =
γ = 1). These issues can be addressed using ML for fea-
ture combination by selecting m (and its parameters) via a
training process that adaptively updates the configuration of
m to optimise its performance in predicting subjective quality
scores [6].

A classic instance of ML methods is the Feed Forward
Neural Network (FFNN). The standard FFNN with one hid-
den layer predicts the quality of an image il by

FFNN(f(il)) = g
(
w

(1)
0 +

K∑
k=1

w
(1)
k Nk(f(il))

)
, (2)

where g is the output transfer function andNk, k = 1, 2, . . . ,K,
are the outputs of the hidden neurons of the neural network,
defined by

Nk(f(il)) = h
(
w

(2)
k,0 +

F∑
j=1

w
(2)
k,jfj(f(il))

)
. (3)

with f(il) defined as above and h being the hidden transfer
function, which is typically a sigmoid function. Note that in
their configurations neural networks do not assume features
to be combined through a pre-determined model (e.g. lin-
ear combination). Neural networks are good at approximat-
ing smooth, continuous mappings of the input features [15].
Their ability to learn from complex inputs has seen them ap-
plied to a wide range of applications from automatic speaker
recognition to traffic forecasting.

In this paper, the performance of a FFNN is compared
to that of a more conventional metric, which assumes linear
combination of the perceptually relevant features fj(il) (in
this sense, it is not considered as a learning method, as the
model m is assumed a priori, and simply tuned on data). The
Principal Component Regression (PCR) is a linear regression
system that combines the principal components (PCs) of the
input features [16]. The variances of the selected PCs approx-
imate the variances of the input feature values. The PCR has
been successfully adopted for video objective quality assess-
ment in [17]. However, as the PCR is a linear regression
technique, it may be limited in its ability to model non-linear
mapping between feature space and perceptual quality score.

3. METHOD

This study evaluates the ability of FFNNs and PCR to pre-
dict subjective image quality from SSIM features. A single
feature vector for each image is extracted using the follow-
ing concatenation of SSIM scalar (real-valued) features: (fL)
luminance, (fC) contrast and (fS) structure. In order to in-
vestigate the effect on prediction accuracy when the feature
space is noisy or a sub-optimal representation, noise is added
to the features, in different levels and configurations. This is
expected to simulate poorly or partially informative feature
spaces, for which a selection of the image information to be
taken into account should be performed.

A systematic evaluation of the addition of noise to the
three SSIM features was conducted. Scaled Gaussian noise
was generated and added to each feature according to the fol-
lowing,

f̂j(il) = fj(il) + νj(il)10(Λ/20) (4)

where νj(il) is sampled from a Gaussian random variable
with zero mean and the same variance as the jth feature:
νj(il) ∼ N (0, σfj ) and Λ is used to adjust the variance of
the noise relative to that of the feature in dB.

The experiments were set up to gradually add noise to dif-
ferent (groups of) features. In the first experiment, noise was
added to only one of the three features (e.g., only to lumi-
nance - fL - leaving contrast and structure unaltered). Both
PCR and FFNN were then used to predict image quality us-
ing features modified according to the setup described in be-
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Fig. 1. Performance of FFNN and PCR, pooled according to
the number of features added with noise (one, two and three,
left to right). Results are (A) Pearson correlation; (B) Spear-
man correlation; (C) Kendall correlation and (D) RMS error.

low. The experiment was repeated three times so that every
permutation, for one feature with added noise, was investi-
gated. This was repeated for all possible numbers of noisy
features (including noise-free), and for every corresponding
permutation. This resulted into eight possible permutations
(one experiment using noise-free features, three experiment
using one noisy feature, three experiments using two noisy
features and a last experiment using three noisy features). Ev-
ery experiment (apart from noise-free) was repeated for five
different noise levels, NL = -40, -20, -10, 0 and 10 dB. Each
feature was normalised so that every input ranged between 0
and 1, consistently for training and test.

For the PCR implementation, the MATLAB functions
princomp and regress were employed, and the output was
normalised using a four-parameter logistic function. For the
FFNN implementation, the MATLAB Neural Network Tool-
box was used, configured to the Levenberg-Marquardt algo-
rithm. It includes an early-stopping method to improve the
neural network generalization performance. The hidden and
output transfer functions are h(x) = tanh(x) and g(x) = x,
respectively. The number of hidden neurons was empirically

set to 3, for a total of 12 weights w to be determined in the
training phase.

Subjective quality assessment databases [18, 19] are nec-
essary for the training and validation of ML-based objective
quality measures. These databases consist of distorted signals
(images or videos) that are annotated with (Differential) MOS
(Mean Opinion Score) values [14].

The LIVE image quality database [13] was used for this
study. It contains 29 reference images and 779 distorted im-
ages, annotated with DMOS scores [20]. It includes images
impaired by means of five distortion types: Gaussian blur,
JPEG compression, JPEG2000 compression, white noise,
and bit errors induced by a Rayleigh fading channel. It
should be noticed that the LIVE database contains few refer-
ence images/videos as compared to the number of distorted
images/videos. This configuration leads to the risk of the ML
method being over-specialised by focusing on the few refer-
ences images included in the dataset. Cross-content training
and testing [8,21] are then essential to judge the performance
of ML-based quality predictors.

This experiment investigates the robustness of ML pre-
diction accuracy due to noisy features, not training-test set
size. Fixed training and test sizes were used with proportions
that allowed all 3654 possible training-test combinations and
corresponds to approximately ten-fold cross validation. The
LIVE database was partitioned into training and test sets that
contained two disjoint sets of reference images (and their dis-
torted versions), in the proportion of 26 for the training and 3
for the test. Both the FFNN and the PCR models were evalu-
ated on each of these training-test cases.

For both methods, recommended [14] performance indi-
cators (Pearson, Spearman, Kendall, RMSE) were calculated
for each of the 3654 training-test cases. Averages and 95%
confidence limits were computed from the standard error for
each performance indicator. It should be noticed that these
confidence limits do not reflect the projected variance of pre-
dictive accuracy on unseen data due to pessimistic bias related
to the limited dataset size [22]. However, they are still useful
for the comparison of the performance of algorithms with a
restricted dataset.

4. RESULTS AND DISCUSSION

Fig. 1 illustrates the difference in performance for the FFNN
and PCR methods when input features are corrupted with
noise. For each experiment the results are pooled according
to the number of noisy features. For example; all three exper-
iments where a single feature has noise added are treated as
one (first column). Results are reported for Pearson, Spear-
man and Kendall correlations as well as RMS error to evaluate
whether the reported trends are consistent across performance
measures.

The 95% confidence intervals in Fig. 1 show that both
methods exhibit a robustness across all experiments. The dif-
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Fig. 2. Sensitivity analysis of FFNNs when noise is added
with noisy features indicated by red bars. The mean nor-
malised weight is plotted for the feature inputs: Luminance
(L), Contrast (C) and Structure (S). The title of each plot is a
binary mask indicating which features have noise applied.

ference in accuracy between FFNN and PCR is small when
only one feature is corrupted but the FFNN shows marginal
improvement for all measures. The results for two noise com-
ponents are the most striking as they highlight the strength
of FFNN over PCR for disregarding the noisy information in
the prediction. The FFNN results remain relatively consis-
tent across all noise levels while PCR performance decreases
as the noise increases. It can be seen that there is a slight
mismatch between performance indicators for FFNN as the
Pearson score remains high while the RMSE is rising in ex-
treme cases. This is caused by a sparseness of training data at
high quality ratings, highlighting the need to present a range
of performance indicators. When all three features are added
with noise, there is little to separate FFNN from PCR.

Pooling of results allows a useful comparison of the two
algorithms, but it is interesting to compare how the accuracy
of the quality prediction is affected according to whether the
noise is added to luminance, contrast or structure features. For
the FFNN, a sensitivity analysis [23] of the trained network
can shed light on this. The network sensitivity to the input
of a specific feature can be measured as the magnitude of the
numerical change in the network output for a given increase
at that feature value. The initial value and rate of change of
the input feature, as well as the values of the other features,
can affect the magnitude of the output change. Therefore, for
each input a range of conditions are specified and the average
change in the FFNN magnitude output over all conditions is
taken as the network sensitivity to that specific feature. The
sensitivity of the FFNN, for feature j = L (luminance), is

defined as

sfL =
1

D(D + 1)2

D−1∑
a=0

D∑
b=0

D∑
c=0

∣∣∣FFNN
(a+ 1

D
,
b

D
,
c

D

)
−FFNN

( a
D
,
b

D
,
c

D

)∣∣∣
(5)

where FFNN(f(il)) = FFNN(fL, fC , fS) is the trained neu-
ral network and D = 10. Similar sensitivity functions are
defined for contrast (sfC ) and structure (sfS ). The trained
networks are stored for each of the 3654 tests within each
experiment. For each network a set of three sensitivities is
produced, these are then normalized to the root mean square
sensitivity for that network.

Fig. 2 shows the sensitivity of the FFNN to each fea-
ture (network inputs fL,fC and fS) for the highest noise case
(10 dB). The title of each plot is a binary mask for the three
features designating which of the features has noise applied.
Thus, 001 indicates that noise has been added only to fea-
ture fS . The higher the sensitivity, the higher the relative
importance of the feature in the prediction for that input con-
figuration. In the noise-free case the structure is most impor-
tant, with luminance being least important and contrast falling
somewhere in the middle. When noise is added to some of the
features the sensitivity of the network to the noisy features
decreases significantly. The network learns that a particular
feature is sub-optimal and reduces its sensitivity to it, relying
on the other available features. In this sense, the FFNN seems
to display intrinsic feature selection capabilities.

The sensitivity analysis allows a further observation: the
network sensitivity for the SSIM components without noise
(Fig. 2 with mask 000) does not match the uniform feature
weighting used by SSIM as proposed by Wang et al. [11].
This confirms the assertion in Section 2 that parameter value
selection in SSIM may be sub-optimal. The weights, when
noise was added to all features (Fig. 2 with binary mask: 111),
show that the network sensitivity has changed for contrast, but
that luminance is consistent as the lowest weighted feature.

5. CONCLUSIONS

In this paper the robustness of ML-based objective image
quality metrics to suboptimal feature space selection was
investigated. Two techniques were compared, the first ap-
plying a PCR to pool the SSIM input features when altered
with Gaussian noise, and the second using a FFNN to pool
the same features. It was observed that the metric using a
ML tool (the FFNN) responded in a more robust way to the
addition of noise to its input features, maintaining an accept-
able prediction accuracy even when a high amount of noise
was added to the inputs. A sensitivity analysis revealed that
this robustness could be due to the intrinsic capability of
the FFNN to diminish the impact of the poorly informative
(noisy) features on the final quality prediction. As a result,



the ability of FFNN to separate the wheat from the chaff in
terms of input features is a key characteristic that supports
the usage of ML-based tools for objective quality metrics.
Future work will broaden the investigation to cover a range
of datasets and other metrics besides SSIM.
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