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ABSTRACT

The theoretical analysis of the Peak-to-Average Power Ra-
tio (PAPR) distribution for an Orthogonal Frequency Divi-
sion Multiplexing (OFDM) system, depends on the particu-
lar waveform considered in the modulation system. In this
paper, we generalize this analysis by considering the Gen-
eralized Waveforms for Multi-Carrier (GWMC) modulation
system based on any family of modulation functions, and we
derive a general approximate expression for the Cumulative
Distribution Function (CDF) of its continuous and discrete
time PAPR. These equations allow us to directly find the ex-
pressions of the PAPR distribution for any particular family of
modulation functions, and they can be applied to control the
PAPR performance by choosing the appropriate functions.

Index Terms— Distribution, Peak-to-Average Power
Ratio (PAPR), Orthogonal Frequency Division Multiplex-
ing (OFDM), Generalized Waveforms for Multi-Carrier
(GWMC), Multi-Carrier Modulation (MCM).

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
technique used to send information over several orthogonal
carriers in a parallel manner. Compared to single-carrier
modulation, this system shows a better behaviour against fre-
quency selective channels and gives a better interference re-
duction. However, the OFDM signal presents large ampli-
tude variations. Based on this fact, non-linear distortion oc-
curs during the introduction of the signal into a non linear de-
vice, as High Power Amplifier (HPA). In order to study these
high amplitude fluctuations, the Peak-to-Average Power Ra-
tio (PAPR) has been defined. The PAPR is a random vari-
able, as the symbols arrive randomly at the modulation in-
put. To study this measure, several researchers have anal-
ysed the distribution law for a particular modulation wave-
form, such as the Fourier basis [1] [2], the Discrete Cosine
Transform (DCT) [3], and the Wavelet basis [4]. Others have
studied the PAPR based on the Fourier modulation basis by
using different waveforms, such as the Square Root of Raised

Cosine (SRRC) [5], the Isotropic Orthogonal Transform Al-
gorithm (IOTA) [6] and other prototype filters in the PHY-
DYAS project [7] for the Filter Bank Multi-Carrier (FBMC)
systems. For the Wavelet modulation basis, the PAPR can
be studied by using several types of wavelets, such as the
Daubechies wavelets, the Haar wavelet, and the Biorthogo-
nal wavelet [8]. To the best of our knowledge, this is the
first work that generalizes the previous studies by considering
any family of modulation functions to derive the CDF of the
PAPR. The equations are applied to check the expressions of
the PAPR distribution, which have been derived by other au-
thors for the conventional OFDM and FBMC. In addition, the
PAPR distribution, which is based on the general expression
is validated by means of a simulation for the Nonorthogonal
FDM (NOFDM) [9].
We first propose a general definition of the continuous-time
PAPR and derive its Cumulative Distribution Function (CDF)
in Section 2. In Section 3, we perform the same analysis for
the discrete time context. Applications of the theoretical re-
sults are illustrated in Section 4. Finally, the conclusions are
presented in Section 5.

2. A CONTINUOUS-TIME ANALYSIS OF THE PAPR

We consider in this section the most general theoretical case:
transmitting infinite data in a continuous way over time.
We first model the Generalized Waveforms for Multi-Carrier
(GWMC) signal at the modulation output in section 2.1. In
section 2.2, we define the PAPR in this case and find an ap-
proximation of its distribution law in section 2.3.

2.1. System description

Information-bearing symbols, resulting from modulation per-
formed by any type of constellation, are decomposed into
several blocks. Each block of symbols is inserted in paral-
lel into a modulation system. At the output of the modulator,
the GWMC signal can be expressed as:



Definition 1. (GWMC continuous signal)

X(t) =
∑
n∈Z

M−1∑
m=0

Cm,n gm(t− nT )︸ ︷︷ ︸
gm,n(t)

, (1)

• T : duration of a block of input symbols,

• M : number of carriers assumed greater than 8 1,

• Cm,n = CRm,n+jCIm,n: input symbols from a mapping
technique, that take complex values,

• (gm)m∈[[0,M−1]] : ∈ L2(R) (the space of
square integrable functions), family of func-
tions representing the modulation system with
gm,n(t) = gRm,n(t) + jgIm,n(t).

In order to apply the Generalized Central Limit Theorem
(G-CLT) in section 2.3, our system must satisfy the following
two assumptions:

Assumption 1. (*) Independence of input symbols

• (CRm,n)(n∈Z, m∈[[0,M−1]]) are independent, each with

zero mean and a variance of σ
2
c

2 ,

• (CIm,n)(n∈Z, m∈[[0,M−1]]) are also independent, each

with zero mean and a variance of σ
2
c

2 ,

• (∀m, p ∈ [[0,M − 1]]), (∀n, q ∈ Z) CRm,n and CIp,q are
independent.

The symbols from constellation diagrams of the usual dig-
ital modulation schemes satisfy these conditions.

Assumption 2. (**) Lyapunov’s condition:

3

√∑M−1
m=0 E|

∑
n∈Z C

R
m,ngRm,n(t)− CIm,ngIm,n(t)|3√

σ2
c
2

∑M−1
m=0

∑
n∈Z |gm(t− nT )|2

< εM � 1,

3

√∑M−1
m=0 E|

∑
n∈Z C

R
m,ngIm,n(t) + CIm,ngRm,n(t)|3√

σ2
c
2

∑M−1
m=0

∑
n∈Z |gm(t− nT )|2

< ε
′
M � 1.

2.2. General definition of the continuous-time PAPR

For a finite observation duration of NT , we can define the
PAPR for the continuous GWMC signal expressed in Eq.(1)
as follows:

Definition 2. (Continuous-time PAPR of GWMC signal for
a finite observation duration)

PAPRNc =
maxt∈[0,NT ] |X(t)|2

Pc,mean
, (2)

with P cmean =
σ2
c

T

M−1∑
m=0

‖gm‖2, (3)

and ‖gm‖2 =

∫ +∞

−∞
|gm(t)|2 (4)

1This is an assumption made for the validity of Central Limit Theorem
(CLT) using Berry-Essen theorem

The subscript c corresponds to the continuous-time con-
text and the exponent N is the number of GWMC symbols
considered in our observation. The average power can be cal-
culated as follows:

P cmean = lim
t0→+∞

1

2t0

∫ t0

−t0
E(|X(t)|2) dt

(∗)
= lim

t0→+∞

1

2t0

∫ t0

−t0

M−1∑
m=0

∑
n∈Z

σ2
c |gm,n(t)|2 dt,

Let us put t0 = KT
2 ,K ∈ N

=
σ2
c

T
lim

K→+∞

1

K

M−1∑
m=0

∫ KT
2

−KT
2

∑
n∈Z

|gm,n(t)|2 dt

(by periodicity)
=

σ2
c

T

M−1∑
m=0

∫ T
2

−T
2

∑
n∈Z

|gm(t− nT )|2 dt

(by periodicity)
=

σ2
c

T

M−1∑
m=0

∑
n∈Z

∫ nT+T
2

nT−T
2

|gm(t− nT )|2 dt

=
σ2
c

T

M−1∑
m=0

∫ +∞

−∞
|gm(t)|2 dt

P cmean =
σ2
c

T

M−1∑
m=0

‖gm‖2.

2.3. Approximation of the CDF for the continuous-time
PAPR

The CDF or its complementary function is usually used in the
literature as a performance criterion of the PAPR. The CDF is
the probability that a real-valued random variable (the PAPR
here) with a given probability distribution will be found at a
value less than or equal to γ, which can be expressed in our
case as:

Pr(PAPRNc ≤ γ) = Pr[
maxt∈[0,NT ] |X(t)|2

Pc,mean
≤ γ]. (5)

In what follows, we give an approximation of this expression.
Let us consider a partition (Ai)i∈[[0,QN−1]] of [0, NT ] defined
as: 

[0, NT ] =
⋃
i∈[[0,QN−1]]Ai

Ai ∩Aj = ∅ i 6= j

∀i ∈ [[0, QN − 2]], Ai = [ti − εi
2
, ti + εi

2
[

AQN−1 = [tQN−1 − εi
2
, tQN−1 + εi

2
],

and let us take these following simplifying assumptions for
this partition:

• εi is chosen with respect to X . For each interval of
length εi, X is a quasi-stationary signal.

• ∀i 6= j
{
|X(t)|2, t ∈ Ai

}
and

{
|X(s)|2, s ∈ Aj

}
are independent.

QN is the number of intervals Ai that we should consider for
N GWMC symbols. By the density of staircase functions
in L2, we can approach the signal X by a staircase signal



X ′. The latter is constant over small intervals Ai. Therefore
the max |X(t)|2 over each Ai is approximately equal to the
max |X ′(t)|2 over the same interval. The maximum of X ′
is reached at all the points of Ai, in particular ti, since it is
constant over each Ai, then:

Pr(PAPRNc ≤ γ) = Pr( max
t∈[0,NT ]

|X(t)|2 ≤ γPc,mean)

≈ Pr(∀i ∈ [[0, QN − 1]] max
t∈Ai
|X
′
(t)|2 ≤ γPc,mean)

≈ Pr(∀i ∈ [[0, QN − 1]]|X(ti)|2 ≤ γPc,mean),

Given the simplifying assumption that samples are indepen-
dent, which is true when ti corresponds to the sampling in-
stant at the symbol frequency, we have:

Pr(PAPRNc ≤ γ) ≈
∏

i∈[[0,QN−1]]

Pr(|X(ti)|2 ≤ γPc,mean). (6)

We should now look for the distribution law of |X(ti)|2.
We first find the distribution of the real part XR(t) of X(t)
and after that, do the same for the imaginary part XI(t).
We have the random variables XR

0 (t), XR
1 (t), XR

2 (t),. . .,
XR
M−1(t) that are independent with zero mean and satisfy

Lyapunov’s condition. Thus, we can apply the G-CLT to get
for large M :

M−1∑
m=0

XR
m(t) ∼ N (0,

σ2
c

2

∑
n∈Z

M−1∑
m=0

|gm,n(t)|2)︸ ︷︷ ︸
σ2
X

(t)

2

(7)

XR(t) ∼ N (0,
σ2
X(t)

2
). (8)

following the same steps we get:

XI(t) ∼ N (0,
σ2
X(t)

2
). (9)

Thus X(t) follows a complex Gaus-
sian process with zero mean and variance
σ2
X(t) = σ2

c

∑
n∈Z

∑M−1
m=0 |gm(t− nT )|2. Hence:

|X(t)|2 ∼ χ2 with two degrees of freedom. (10)

Denoting x(ti) =
Pc,mean
σ2
X(ti)

,

we get from Eq.(6) and Eq.(10), the following result:

Approximate PAPR distribution of continuous GWMC
signal for a finite observation duration of NT

For large M , with the considered simplifying assump-
tions, we have:

Pr(PAPRNc ≤ γ) ≈
∏

i∈[[0,QN−1]]

[1− e−x(ti)γ ], (11)

with x(ti) =

∑M−1
m=0 ‖gm‖

2

T
∑
n∈Z

∑M−1
m=0 |gm(ti − nT )|2

.

Note that the approximate distribution of the PAPR de-
pends on the family of modulation functions (gm)m∈[[0,M−1]],
therefore the PAPR performance can be changed by choosing
the appropriate modulation system. In addition, it depends
also on the parameter QN which is proportional to N the
number of GWMC symbols considered in the observation.
The approximate expression of the CDF of the PAPR will be
compared to the empirical CDF in Section 4.

3. A DISCRETE-TIME ANALYSIS OF THE PAPR

In [10], A. Skrzypczak studies the discrete-time PAPR for any
waveform used with Fourier exponential basis. We generalize
this discrete-time study by considering any family of modu-
lation functions. Our functions must only satisfy Lyapunov’s
condition, the choice is then wider. Thus, for an infinite time
of transmission, we can express the GWMC discrete signal at
the output of the modulator as:

Definition 3. (GWMC discrete signal)

X(k) =
∑
n∈Z

M−1∑
m=0

Cm,n gm(k − nP )︸ ︷︷ ︸
gm,n(k)

, (12)

• P : number of samples in period T .

3.1. General definition of the discrete-time PAPR

For a finite observation period of NP , the PAPR of the dis-
crete GWMC signal can be defined as follows:

Definition 4. (Discrete-time PAPR of GWMC signal for a
finite observation duration)

PAPRNd =
maxk∈[[0,NP−1]] |X(k)|2

Pd,mean
(13)

Pd,mean =
σ2
c

P

M−1∑
m=0

‖gm‖2, (14)

where ‖gm‖2 =

+∞∑
k=−∞

|gm(k)|2.

The subscript d corresponds to the discrete-time context.
In fact, the discrete mean power is defined as:

Pd,mean = lim
K→+∞

1

2K + 1

K∑
k=−K

E(|X(k)|2). (15)

C. Siclet has derived in his thesis [11], the mean
power of a discrete BFDM/QAM (Biorthogonal Fre-
quency Division Multiplexing) signal that is expressed as:
X[k] =

∑M−1
m=0

∑+∞
n=−∞ fm[k − nP ], such that fm[k] is an

analysis filter. His derivation does not use the exponential
property of fm[k]. Then, in our case, we can follow the same
method to get Eq.(14).



3.2. General approximation of the CDF of the discrete-
time PAPR

By considering an observation duration limited to N GWMC
symbols of P samples each, and by approximating the sam-
ples X(0), X(1), X(2),. . ., X(NP − 1) as being indepen-
dent, the CDF of the PAPR for the GWMC discrete signal
defined in Eq.(12), can be expressed as follows:

Pr(PAPRNd ≤ γ) = Pr[ max
k∈[[0,NP−1]]

|X(k)|2 ≤ γPd,mean]

= Pr(∀k ∈ [[0, NP − 1]] |X(k)|2 ≤ γPd,mean)

≈
∏

k∈[[0,NP−1]]

Pr(|X(k)|2 ≤ γPd,mean). (16)

In order to look for the distribution of |X(k)|2, we can pro-
ceed in the same way as the continuous time context, then we
get:

Pr(|X(k)|2 ≤ z) ≈ 1− e
− z
σ2
X

(k) , (17)

with σ2
X(k) = σ2

c

∑
n∈Z

M−1∑
m=0

|gm,n(k)|2.

Denoting x(k) =
Pd,mean
σ2
X(k)

,

and from Eq.(16) and Eq.(17), we obtain:

PAPR distribution of discrete-time GWMC signal for a
finite observation duration

For large M , with the considered simplifying assump-
tions, we have:

Pr(PAPRNd ≤ γ) ≈
∏

k∈[[0,NP−1]]

[1− e−x(k)γ ], (18)

with x(k) =

∑M−1
m=0 ‖gm‖

2

P
∑
n∈Z

∑M−1
m=0 |gm(k − nP )|2

.

Note that the expression of the approximate PAPR dis-
tribution in the discrete case is similar to its expression in
the continuous case, with all parameters explicitly defined.
Thus, taking into account the simplifying assumption of our
derivations, we can easily study the PAPR performance of any
Multi-Carrier Modulation (MCM) system.

4. APPLICATIONS

The closed-form approximations derived in this paper give us
the possibility to find the CDF of the PAPR of any modulation
waveform that satisfies our assumptions. We illustrate this
fact by the following examples:

4.1. Conventional OFDM

We want to check the expression derived by Van Nee in [1]
for the conventional OFDM for the discrete case. Then let us
consider:

• Fourier basis is used for the modulation, with a rect-
angular waveform: gm(k) = e

j2πmk
P Π[0,P ](k), with

Π[0,P ](k) =

{
1 if 0 ≤ k ≤ P
0 else

,

• The observation is limited to one OFDM symbol and
the number of samples considered for this symbol is
M .

The expression of the GWMC signal in Eq.(12) becomes
X(k) =

∑
n∈Z

∑M−1
m=0 Cme

j2πm(k−nP )
P Π[0,P ](k − nP ). We

apply Eq.(18) of the PAPR distribution with N = 1. We get:

x(k) =
MP

P
∑
n∈Z

∑M−1
m=0 |e

j2πm(k−nP )
P Π[0,P ](k − nP )|2

= 1,

and then, Pr(PAPR1
d ≤ γ) = [1− e−γ ]M . (19)

It is similar to the expression derived by Van Nee for the dis-
crete case.

4.2. FBMC systems

We consider the OFDM/OQAM as being an example of
the FBMC system, and we check the expression derived by
A.Skrzypczak [12]. Then let us consider:

• The modulation functions are:

gm(k − nP ) = hOQAM (k − nP )ej2π
m
M

(k−D
2
)ejθm,n ,

then |gm(k − nP )|2 = h2
OQAM (k − nP ),

hOQAM is the prototype filter (IOTA, SRRC, PHY-
DYAS..),

• The observation is limited to one block of symbols and
the number of samples considered in this block is M ,
then P = M ,

• ‖gm‖2 = 1.

The expression of the GWMC signal in Eq.(12) becomes
X(k) =

∑
n∈Z

∑M−1
m=0 Cm,nhOQAM(k − nP )ej2π

m
M

(k−D
2 )ejθm,n .

We apply Eq.(18) of the discrete-time PAPR for a finite ob-
servation duration with N = 1. Then we get:

x(k) =
1

M
∑
n∈Z h

2
OQAM (k − nP )

,

and then:

Pr(PAPR1
d ≤ γ) =

M−1∏
k=0

[1− e

−γ
M

∑
n∈Z h

2
OQAM

(k−nP )
]. (20)

This result is similar to the one obtained by A. Skrzypczak.



4.3. NOFDM

For NOFDM system, considering Hamming window, the
waveform is expressed as:

gm(t) = e
j2πmt
T w(t),

w(t) =

{
0.54− 0.46 cos(2π t

T
) if 0 ≤ t ≤ T

0 else.

Fig.1 shows the theoretical CCDF of the PAPR based on
Eq.(18) withP = M andN = 1, and the experimental CCDF
simulated by generating 10000 realizations of NOFDM sym-
bols, for different number of carriers. We observe that the

Fig. 1. Experimental and Theoretical CCDF of the PAPR for
NOFDM system using Hamming window for different num-
ber of carriers: (a) M = 64, (b) M = 256, (c) M = 1024.

larger the number of carriers gets, the more accurate the the-
oretical curve gets. And this is due to the fact that our deriva-
tion are based on the G-CLT which assumes a large number
of carriers.

5. CONCLUSION

In this paper, we make several derivations to achieve the more
general CDF approximation of the PAPR in the sense that
transmission symbols are carried by any functions. The anal-
ysis is performed in both continuous and discrete time. To il-
lustrate the theoretical results, we express the PAPR distribu-
tion of different multi-carrier systems using the general equa-
tion.
The future study is to establish an optimization problem to
find the optimal family of modulation functions that maxi-
mize the CDF of the PAPR. The constraints of this problem
vary each time the application requirements vary, giving each
time a new optimization problem and therefore a new fam-
ily of modulation functions as an optimal solution, which can
lead to a new system of Multi-Carrier Modulation.
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