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ABSTRACT
In this paper we propose a novel framework for fast ex-
ploitation of multi-view cues with applicability in different
image processing problems. In order to bring our proposed
framework into practice, an epipolar-constrained prior is pre-
sented, onto which a random search algorithm is proposed
to find good matches among the different views of the same
scene. This algorithm includes a generalization of the local
coherency in 2D images for multi-view wide-baseline cases.
Experimental results show that the geometrical constraint al-
lows a faster initial convergence when finding good matches.
We present some applications of the proposed framework on
classical image processing problems.

Index Terms— Super resolution, deblurring, epipolar
line, approximate nearest neighbor

1. INTRODUCTION

Multi-view settings for image processing provide richer infor-
mation thanks to the redundancy and disocclusions inherent to
its data. This kind of data has improved the performance of
a great number of different applications in the image process-
ing field, such as reconstruction [1], accurate tracking [2] or
pose estimation [3].

The redundancy of data among different views of the
same scene is particularly useful. It is known that if an image
is divided in small regions (called patches) it is very likely
to find similar ones in the same image and across scales [4]
but also between different multi-view captures of the same
scene [5]. As it will be seen in Section 3, this redundancy
can be combined with geometric constraints to formulate a
non-parametric compact prior that can be useful to solve a
grand variety of classical image processing problems.

As usual in exploitation of non-parametric priors, the use
of efficient search algorithms to find similar patches is re-
quired. A naive approach to exploit the multi-view informa-
tion would be to perform a random search on the other views
using efficient methods as approximate nearest neighbor by
either random sampling and propagation [6], propagation of
good matches with kd-trees [7] or seeding initial matches with
hashing and propagation by using image coherency [8]. How-
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Fig. 1. Patch-based reconstruction by choosing the best match
on epipolar lines in the other available views. The left image
of this figure shows the reconstruction (top-left half) along
with the original image (bottom-right part of the image).

ever, none of them is designed to take advantage of the infor-
mation redundancy present in multi-view environments. We
propose on Section 4 an efficient search algorithm based on
the compact prior.

In order to show the applicability of our framework, in
Section 5 we exploit our prior in two applications: super res-
olution and deblurring, in which we recover the lost sharpness
of a blurred image by using the information contained in other
views of the same scene.

2. NOTATION

We denote 2D image positions as lowercase bold letters (x),
3D positions in uppercase bold letters (X), and x̃, X̃ their
homogeneous counterparts.

Uppercase letters (I) refer to images. In any of the images,
a subscript indicates the image number, while the superscript
indicates whether the image contains low-frequency (IL) or
high-frequency (IH ) information. If there is no superscript,
we refer to a sharp image (containing both low- and high-
frequency components).
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Fig. 2. The proposed mechanism for multi-view propagation. (b) presents a generalization for wide-baseline multi-view cases
of the 2D local coherency by coplanarity propagation to determine the candidate patch (blue) from the neighbor patch (red).
Then we propagate the position parameter λj between neighbor patches with circular propagation, as shown in (c).

3. EPIPOLAR-CONSTRAINED PRIOR

In [5], targetting a super-resolution (SR) problem, it is shown
that the quality of SR images can be improved by using multi-
view captures of the same scene, as similar patches are likely
to be found between them. This implies that there is a high
likelihood of finding relevant patches on projections of the
same surface on each view introducing suitable geometrical
constraints.

We use the epipolar lines ` to establish the relations be-
tween the different images of the scene. An epipolar line is the
2D projection of a 3D ray that connects a point X in the world
with the optical center of the camera through the position x
in the image [9]. It can therefore be used to restrict the search
space to a single line when looking for the matching point in
another view. This constraint enhances the search speed when
compared to a random search on the entire image. Assuming
an image with a number N of pixels, our proposal requires
in the worst case (i.e., when the epipolar line goes from the
top-left corner to the bottom-right corner of the image) a com-
putation time of O(

√
N), while the full image search would

require O(N).
To obtain the parameters of the epipolar lines we need the

fundamental matrices F that relate each pair of images. They
can be obtained by estimation or from a calibrated sequence,
in which case we extract the intrinsic (Λ) and extrinsic pa-
rameters (Ω, τ ) from the projection matrices P. Said param-
eters are used to find the center of projection XCoP in world
coordinates of the different cameras in the dataset. Then, by
projecting the X̃CoP of a camera to the remaining cameras of
the setting, we obtain the epipoles ẽ. Therefore, the funda-
mental matrix between a source image Is and a target image
It can be found by applying Fs,t = ẽt × PtP+

s , where ẽt

is the projection of the source camera X̃CoP , and P+
s is the

pseudoinverse of Ps.
With Fs,t we can find the epipolar line `t in It for each

point x̃s of Is using the equation `t = Fs,tx̃s. More details
can be found in [10].

To compute each of the points contained in the epipolar
line, we use a parameterization of the line in order to make the
prior suitable for all the possible lines that can be generated in
a multi-view scenario. The calculation of a point x = (x, y)T

with the above mentioned parameterization is

x = e + λû, (1)

being ex,y = ẽx,y/ẽz the coordinates of the epipole e, û a
unitary direction vector determined by (b,−a)T /

√
a2 + b2,

where a, b are the two first parameters of the epipolar line,
and λ the depth parameter.

In order to make the prior robust to illumination changes
between projections, we compare an illumination-invariant
representation of the texture of the patch, i.e., the pixel val-
ues of the patch after subtracting its mean value.

As a demonstration of the validity of the prior, we re-
constructed an entire image from just patches on the epipolar
lines of all views. In Figure 1 we show the original and re-
constructed image along with the other images of the dataset.
In this example we find the best match for the marked patch
in the line of the second view (red square), so we use its in-
formation to reconstruct the patch. As we can see, the recon-
structed part is coherent with the rest of the image, proving
that the epipolar prior is able to find good matches.

4. EFFICIENT SEARCH

Our goal is to find good matches from our multi-view prior
with a reduced number of searches, in order to make the al-
gorithm efficient towards real-time applications. Thus, a ran-
domized search approach is better suited than an exhaustive
search. To reduce the number of searches without missing
potential good matches, we exploit the spatial coherency in a
way that can be interpreted as a generalization of 2D propa-
gation schemes in existing randomized search strategies.

The core algorithm in our proposed framework is based
on a randomized search strategy similar to [6] with the patch



search constrained to the epipolar lines (our multi-view prior).
As in the mentioned algorithm, our approach makes a random
initialization to allow independent uniform samples across the
different images of the dataset and along the epipolar lines.
Then, it is followed by a number of iterations of our circu-
lar propagation and random-search steps in order to reach
convergence of the results. The proposed circular propaga-
tion is effective when the different views of the scene have a
wide baseline. If the baseline between the views is small, the
epipolar lines are almost parallel and the search is more effi-
ciently done with the classical propagation scheme in existing
randomized search approaches.

Initialization. Let {I1, I2, . . . , IK} be our image dataset
where we take Is as the source image. We want to match every
m ×m patch P in Is with another one in any of its epipolar
lines in the rest of the images. Therefore, we give to every P
of Is a random depth (λ) value and a random image number
i. The image number i determines the epipolar line where the
patch is located by means of the line parameters a and b, and
the λ its exact point inside this line (Equation 1).

Circular propagation. Let P1 be a source patch in the
source image Is with its central pixel located at xs and its
match P ′

1 determined by Ii and λi. Through a comparison
of P ′

1 with the matches of the neighbors of xs, we want to
improve the previously mentioned match. This comparison
is made with the four neighboring patches of P1, which are
the ones located one row above, one row below, one column
before and one column after xs (Figure 2(a)).

Let P2 be any of the neighboring patches of P1 and its
current match P ′

2, determined by λj and located in Ij inside
the corresponding epipolar line `2,j . We need to determine
the position of the candidate patch Pc for P1.

Based on the assumption that a 3D scene is locally planar,
we consider that a good neighbor match can be found in a lo-
cal neighborhood of a detected good match. However, the dif-
ference in perspective between the cameras in wide-baseline
setups require a generalization of the local coherency in 2D
for the multi-view cases. Since we have the epipolar lines
`2,j and `1,j we can determine the position of Pc by assum-
ing the coplanarity of neighbor patches, effectively general-
izing the previously mentioned 2D local coherency for these
multi-view cases. The determination of the candidate’s posi-
tion by coplanarity can be seen in Figure 2(b). As the epipolar
lines between neighbors are close to each other, we can relax
coplanarity to equidistance from the epipole in order to al-
low a faster implementation. In Figure 2(c) we can see how
the equidistance is applied as a relaxation of the coplanarity,
resulting in a circular propagation.

The next step is to measure the error between P1 and Pc

by computing the Euclidean distance between them and com-
paring it to the error between P1 and its previous match, P ′

1.
If the candidate’s error is smaller, we store the λj and Ij to
make Pc the new best match. We repeat this process for all
the four surrounding neighbors of xs and proceed to the sec-
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Fig. 3. MSE per pixel of the matches at each iteration when
applying PatchMatch [6] and our approach. The Propagation
and Random Search curves refer to the execution of our algo-
rithm iterating exclusively the circular propagation or random
search steps respectively.

ond step of the iteration.
Random search. As the circular propagation does not

guarantee the found match to be the optimal in the line, we
proceed to a random search in the line in order to determine
if a better match can be found in there. The search is done
iteratively reducing the search range in each step by α, which
is a fixed ratio between search ranges (in our experiments,
α = 0.7). In each iteration, we give a new random value to λ
in the equation 1 to determine the location of a new candidate
patch Pc. We keep the patch that presents the smaller error
when compared to the source patch P1 in Is. This process is
repeated until the search range becomes smaller than 1.

5. EXPERIMENTAL RESULTS

For our experiments, we used the geometrically calibrated
Inria 4D Repository datasets1, consisting of cameras 0-4,
frames 550, 641, 706 from the dancer dataset; cameras 4,
5, 9, 13, 15, frames 50, 108, 169 from the martial dataset;
and cameras 4, 5, 9, 13, 14, frames 005, 107, 279 from the
dog dataset. Due to lack of illumination, the dog dataset was
gamma-corrected. The implementation was done in MAT-
LAB, with the costliest functions implemented in OpenCL.
The results of the applications presented in this section were
obtained after 20 iterations of the corresponding algorithm
(PatchMatch or the proposed) with 3× 3 patches.

5.1. Validation

To show the validity of our approach, we compare the con-
vergence of our search strategy with that of PatchMatch [6].
PatchMatch searches for matches in the entire image, while
we only search in the points strictly contained inside the cor-

1http://4drepository.inrialpes.fr/public/datasets



Fig. 4. Super-resolution results. First column, the result of
applying a single-image search with PatchMatch; second col-
umn, the application of our search strategy through the rest of
the images of the dataset. As we can see, our approach more
realistically reconstructs the fingers of the raised hand in the
first image or the creases in the clothing in the second image.

responding epipolar line. In order to make a fair compari-
son, we apply PatchMatch to all the images of the dataset ex-
cluding the source image. Then, we compare the results and
search for the ones that have less error when compared to the
patches of the source image. Both searches are applied up to
twenty iterations in an attempt to show the asymptotic accu-
racy of our approach as compared to a full-range randomized
search scheme. In Figure 3 we show the convergence curve
for one of the scenes.

For limited run-time, the proposed restricted search can
find better matches than PatchMatch. This is due to the fact
that most of the zones of the used dataset are large, smooth
regions and our prior presents higher probability of finding a
similar patch inside a restricted line than if we search in all the
image. However, searching for good matches exclusively in-
side the epipolar line drastically reduces the amount of match-
ing candidates and reaches faster its limit. In the curves of
the circular propagation and random search, we can see how
the random search inside the line is the process giving better
matches as the number of iterations is increased. However,
the combination of circular propagation and random search
can still achieve better matches.

5.2. Applications

We illustrate the usefulness of the proposed framework
through two different applications. The first one is an
example-based super resolution by high-frequency (HF)
transfer [11], [12], where we enhance the single-image re-
sult by applying our method as a post-processing step. The

second application consists in the deblurring of an out-of-
focus image by using the information of the non-blurred
images of the dataset.

Super resolution. To test the super resolution applica-
tion, we start with a set {I1, I2, . . . , IK} of sharp images (that
means, high- and low-frequency components) of the same
scene. We take I1 as the source image and apply a bicubic
upscaling with magnification factor s = 1.5, resulting in the
image UL

1 . The superscript L points that it is a low-frequency
(LF) image. Then we use both search algorithms (PatchMatch
and our proposal) to search the best match for each patch of
UL

1 , taking as data images the LF spectrum of I1 (IL1 ) for the
patch match search (resulting in a single-image search) and
the LF of IL2 , . . . , I

L
k for our proposal (multiple-image search).

The super resolution image is built by taking UL
1 as the

LF background and adding the best HF patches of the single-
image search and the multiple-image search. That allows us
to enhance the results of a single-image search using the ad-
ditional information found in the other cameras. Some exam-
ples of the improvement in the HF components of the image
can be found in Figure 4.

In Table 1 we show the average PSNR and SSIM of each
upscaling method we applied when compared to the sharp im-
age. Both PSNR and SSIM show that our proposal improves
the results of a single-image approach.

Deblurring. We start with a set {B1, I2, . . . , IK}, being
B1 a damaged (blurred) image that we want to fix with de-
blurring. In order to find the best matching patches to ob-
tain I1 (i.e., a sharp version of B1), we compute a blurred

σ = 1.2

σ = 1.6

Fig. 5. Detailed view of deblurring results. We present the
blurred images (left) with different Gaussian PSF and the de-
blurred result obtained applying our algorithm.



Method PSNR SSIM
Bicubic 39.26 0.9846
Single-image SR 40.04 0.9850
Our proposal 40.24 0.9856
Proposal + single-image SR 40.31 0.9855

Table 1. Super-resolution results. Average PSNR (dB) and
SSIM of the different upscaling methods applied to the differ-
ent frames of the sequence shown in Figure 4.

version of the rest of our input images to obtain the dataset
{B2,B3, . . . ,BK}. This blurred version of our initial dataset
is used to find matches for every patch in B1. Considering
PBi to be any of the matches found in any of our K-1 images,
we reconstruct the image applying the next expression:

Prec = PB1 + PIi − PBi , (2)

where Prec is any patch of the reconstructed image and PB1
,

PIi , PBi are any of the patches of B1, Ii and Bi respectively.
The Equation 2 adds to every patch of B1 the sharp informa-
tion present in its best match PIi substracting the blurred part
of it, present in Bi.

In Figure 5 we show a pair of blurred images with a Gaus-
sian PSF of standard deviation σ = 1.2 and 1.6 respectively
alongside with its corresponding deblurred results. In Table 2
we present the PSNR of different σ applied to the same input
image along with the corresponding PSNR of its deblurring.

6. CONCLUSIONS

We have presented a new framework for multi-view settings
which is based on a general and compact epipolar-constrained
prior to efficiently exploit the geometrical properties of these
scenarios.

We have also introduced a generalization of existing ap-
proximate nearest neighbor patch-search algorithms using the
proposed prior. The efficient search adapts the bidimensional
local coherency to wide-baseline multi-view scenarios by
propagation under an assumption of local surface coplanarity,
which can also be relaxed to the proposed circular propa-
gation scheme. As an example of the applicability of our
framework to different image processing problems, we show
1) a super resolution application that improves the results of

σ = 1.2 σ = 1.3 σ = 1.5 σ = 1.6

Blurred 31.28 30.87 30.28 30.07
Deblurred 33.64 33.13 32.31 31.89

Table 2. Deblurring results. PSNR (dB) of the blurred and de-
blurred image when compared to the original (without deblur-
ring) for different standard deviation factors σ of a gaussian
blurring kernel.

single-image super resolution, and 2) how we can use the
geometrical prior to deblur a damaged image in a multi-view
dataset thanks to the remaining images.

As future work, we plan to study using homographies to
enhance the quality of the results and the applicability of the
method for other classical image processing problems such as
image denoising.
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