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ABSTRACT

In this paper we explore the idea of defining sound objects and how
they may be detected. We try to define sound objects and demon-
strate by our experiments the existence of these objects. Most of
current works on acoustic event detection focus on detecting a finite
set of audio events and the detection of a generic object in sound is
not done. The major reason for proposing the idea of sound objects
is to work with a generic sound concept instead of working with a
small set of acoustic events for detection as is the norm. Our defi-
nition tries to conform to notions present in human auditory percep-
tion. Our experimental results are promising, and show that the idea
of sound objects is worth pursuing and that it could give a new direc-
tion to semi-supervised or unsupervised learning of acoustic event
detection mechanisms.

Index Terms— Sound Objects, Acoustic Event Detection

1. INTRODUCTION

The key to automated machine understanding of audio data is de-
scription of its content. Audio descriptions are generally provided
in terms of the distinct, identifiable sound units detected in the
recordings. Traditionally, these units have been human-identifiable
acoustic events, detectors for which are learned from annotated data.
Needless to say, these events must be from a finite vocabulary of
events for which it was possible to train detectors – one might an-
thropomorhpize this to state that the automated system only detects
the events it is familiar with.

Contrast this with human (and possibly other animal) listeners.
While we definitely do identify sound events that we are familiar
with, we are often also able to detect the occurrence of sound events
or acoustic “objects” that we have never encountered earlier, based
only on how the phenomenon stands out against the background – an
ability that greatly enables us to form our own vocabulary of sounds
from repetitions of the detected novel phenomena. Cognitively, it
is argued by several researchers, there may be an underlying model
of “objectness” that human (or animal) listeners subscribe to, and
that we are able to detect the occurrence of acoustic phenomena that
conform to this notion of objectness, even when we are unfamiliar
with the event itself [1, 2, 3].

This observation motivates the work we present in this paper.
Instead of working with a small vocabulary of pre-specified acoustic
events, we explore a generic concept called sound “objects” which,
as we define it, is closely related to human perception of sound. We
draw upon psycho-acoustic models of human perception to claim
that there are some inherent characteristics to sound objects which
are present no matter what the actual object is. Since our goal is
computational modeling, we then provide a formal definition of
sound objects; however our definition is phenomenological rather
than psycho-acoustically motivated – if humans can detect them,

they are objects. We then show experimentally that it is indeed
possible to automatically detect sound objects as defined, without
any reference to the semantics of their content. Although in this
work we do not actually explicitly demonstrate it, based on our
experimental evidence for detection of sound objects we argue that
such detection can hold significant importance for acoustic event
detection in semi-supervised and unsupervised paradigms.

Before proceeding, we will first present a very brief survey of
some of the recent literature in detecting acoustic events. The lit-
erature on the topic is large and, with apologies to authors whose
work we may not have cited, our review is only a sampling. We
note here that the terms “acoustic event”, “sound object”, and other
permutations of the four words have been used interchangeably in
the literature. Consequently, the sound phenomena we call “objects”
in this paper may be viewed as “events” by some researchers. We
do not attempt to clear the confusion, beyond pointing out that by
our convention objects are cognitively distinct units, and while they
may form events or be constituents of larger events, they will not
themselves be comprised of events.

Mesaros et al. [4] use Hidden Markov Models to model each of
a set of 60 events. The effects of background noise on detection and
temporal localization of events in audio is also studied in this work.
Lee et al. [5] model events as states of a Markov model. The for-
mulation is intended for weakly-supervised learning scenarios where
the exact time-stamps within which events occur in the training data
is unknown. A total of 25 events are evaluated. Lu et al. [6] utilize
an SVM on features derived from segments of the audio, and smooth
the labels obtained to reduce false alarms. A particularly effective
structure-free approach employs bag-of-words characterizations of
the audio, obtained by clustering feature vectors derived from the
audio. Pancoast and Akbacak [7], and by Jiang et al. [8], report ap-
proaches that use these in conjunction with SVM classifiers for event
detection in the context of multimedia event detection. They are also
used in a slightly different context for copy detection in audio by
Liu et al. [9]. An interesting method is proposed in Lee et al. [10]
which models event classes as Gaussians and employs probabilis-
tic latent semantic analysis of Gaussian component histograms on
soundtracks of videos to identify types of videos. Zhuang et al. [11]
use a speech recognition framework based on HMMs for detection
of events. They also attempt to identify the right set of features for
the purpose in the process. Valenzise et al. [12] and Pikrakis et al.
[13] attempt to detect events relevant to surveillance: Valenzise et al.
[12] use a GMM-based classifier for gunshot detection, and Pikrakis
et al. [13] use Bayesian networks for the same purpose. Kumar et al.
[14] employ a simple Gaussian mixture classifier to detect events.

Notably, although all of these and other relevant literature ap-
proach the problem of acoustic event detection from many perspec-
tives, in all cases the attempt has been to develop detectors for a finite
(and inexhaustive) set of known events : the notion of just detecting
objects without reference to their underlying category, i.e. without



specific a priori information about them has been absent.
The rest of the paper is organized as follows: In Section 2 we

discuss the idea of a sound object, placing it in the context of stud-
ies on human cognition. In Section 3 we present our human-centric
definition of sound objects. In Section 4 describes our approach for
automatic detection of sound objects. In Section 5 we present our ex-
perimental set up and results and in Section 6 we discuss our results,
and present our conclusions.

2. WHAT IS A SOUND OBJECT

At the basis of our work is the definition of a sound object. We begin
by noting that the concept of an object is itself hard to articulate,
and philosophers though time, from Leucippus and Plato to Kant
[15] and Russel [16] have struggled to define it. Cognitive scientists
too have found it difficult to arrive at a precise definition. From a
purely cognitive point-of-view, objects are defined as the bases of
experience [2] – a definition that the Merriam Webster dictionary
agrees with in defining an object as “something material that may be
perceived by the senses”. In effect, by these definitions, objects are
perceptual entities that are fundamentally a function of the sensory
processes that perceive them. Even so, a concrete definition remains
elusive, with definitions largely being in the nature of a composition
of parts or percepts, e.g. [17, 18].

And yet, in the physical world, the concept of an object is some-
thing all of us are familiar with, in spite of inherent ambiguities (e.
g. a door is handle an object, but then so is a door that it is a part
of). To contextomize American jurist Potter Stewart, “we know one
when we see one”. The word “see” is particularly relevant here –
although it is agreed that the concept of “objecthood” extends to
perceptions derived from all senses, the majority of the discussions
and descriptions in the literature have centered on visual objects.

Not surprisingly then, researchers in computer vision too have
attempted to emulate this human facility of detecting (or hallucinat-
ing) objects in their visual field. In the context of computer vision,
this translates to detecting objects in digital images, based only on
their “objectness”. For computational purposes, however, they have
avoided hierarchical-grouping-based definition of objects such as in
[18], and work from the simpler saliency based description given in
Alexe et al. [19]: an image object is defined as something which
holds at least one of the following three characteristics (a) it has
a well defined closed boundary in space (b) it has an appearance
which is different from the surrounding (c) stands out as salient or is
unique within the image. A significant literature has since sprung up
that builds on the concept of objectness to detect objects in images.

In this paper we are, however, interested in detecting sound ob-
jects. In particular, we are interested in detecting them from the sig-
nal without using spatial cues, since such cues will not be available
in typical digital audio recordings. Pierre Schaefer’s work [20] on
sound objects is one of the early works on theory of sound objects
and our definition of sound objects closely follows his idea of it.

The concept of a “sound object” follows the same rationale as
an “image” object. Sound objects are distinct acoustic percepts that
we distinguish from the background as possibly representing a co-
gent phenomenon or source that stands apart from the background.
Unfortunately, they too suffer from the Potter-Stewart syndrome: we
know them when we encounter them, but they are hard to define.

Since objects are essentially cognitive constructs, let us then re-
fer to researchers in auditory cognition to obtain a definition. From
a cognition perspective, sound objects – if they exist – are sensory
entities built upon auditory stimuli; hence, while we refer to “sound”
objects in deference to the fact that these objects are definitive units

that we expect to detect in digital recordings of sound, the literature
in cognition refers to “auditory” objects. For want of a convincing
argument to the contrary, we will assume that sound objects are the
same as auditory objects.

Even among auditory neuroscientists we encounter debate and
diversity of definition. Bregman [21] rejects the very notion of an
auditory object, claiming instead that auditory “streams” are the fun-
damental units of the auditory world. More commonly, auditory ob-
jects are associated with sources [2]. The flaw in this association is
that a source may produce more than one type of sound; other phe-
nomena that a human may identify as a sound object (e.g. a snippet
of music) may have many sources. The peripheral auditory system
constructs two-dimensional characterizations of sound akin to “im-
ages” [22, 23]. Based on this researchers such as Kubovy and Van
Valkemberg [1] propose a visual analogy that resembles the propo-
sitions in Alexe et al. [19]: auditory objects are defined as salient
phenomena that lie within clear boundaries in two-dimensional char-
acterizations such as spectrograms. This analogy however breaks
down quickly; by this rule individual formants in a recording would
stand out as objects. In fact, although we have used the visual anal-
ogy to hypothesize sound objects, it is questionable how much the
analogy can be stretched. The fundamental difference is that visual
objects are formed from presence of physical objects, while sound
objects result from their actions. Lemaitre and Heller [24] studied
a taxonomy of everyday sound and concluded that sounds produced
through “specific actions” are easier to identify compared to general
ones, a characteristic that may be at variance with visual objects.

Yet others researchers, e.g. [3] propose that auditory objects are
formed through grouping of time-frequency components based on
perceptual expectations. Unfortunately this definition is simultane-
ously over generative and over inclusive – grouping can group parts
of what a human would identify as an object separately; at the same
time a background, which too is not an object, too would be grouped.
Moreover, segregation and grouping of time-frequency components
may occur at many scales, not all of which conform to our notion
of objects. Other scientists have proposed detection-based defini-
tions, via models of the cognitive processes that find acoustic ob-
jects: Shamma [23] suggests that objects are identified from coin-
cident spike discharges in separated auditory nerves, Husain et al.
[25] propose that objects may be detected through a hierarchical 3-
stage process in the brain, Griffiths and Warren [2] suggest a cascade
of processes, and Adams and Janata [26] propose a template based
model for auditory object detection.

Clearly then, although the literature provides many hints, it does
not provide a definitive answer to what a sound object may be, and
how it can be characterized in terms that will allow us to build a
computational model. Some of the principles proposed in the lit-
erature are, however, useful. Griffiths et al. [2] aver that auditory
objects must be temporally restricted. Clearly sound objects pos-
sess saliency, as suggested by Kubovy and Vanvalkemberg [1]. They
must stand out against the background. We can also clearly specify
what sound objects are not – just as visual objects are distinctly not
textures, sound objects too are not sound textures. Sound textures
are analogous to visual textures and are produced by superposition
of multiple and rapidly occurring acoustic events [27, 28]. Exam-
ples are sounds produced by naturally occurring events such as rain-
storms, insect swarms, fires, galloping horse etc. And yet, although
they are composed from events, textures end up possessing temporal
homogeneity, which we claim objects need not have.

Beyond these guidelines, we must eventually state a computa-
tionally addressable definition of sound objects ourselves.



3. DEFINING SOUND OBJECTS

Possibly the clearest way to define sound objects is one alluded to
earlier: based on human judgment. Simply stated, our definition
will be – if a human can detect it, it is an object.

This leads us then, to an empirical characterization based on hu-
man annotated data. We will ask humans to detect and annotate
sound events heard in a collection of audio recordings. Since the
annotations are done by humans, we can claim that these are guided
by the human cognitive notion of sound objects. We will then eval-
uate whether these annotations can be used to learn a sound-object
detector.

Following this, a collection of audio recording was given to hu-
man annotators, who were asked to detect and annotate the start and
end times of sound events heard in the recordings. For purposes we
explain shortly, the annotators were also asked to assign labels to
the detected events. The labels, which were selected by the anno-
tators themselves, included sounds such as “birds”, ‘crowd cheer”,
“drums” etc. However, the labels were post hoc and not imposed.
Some level of inconsistency is to be expected. The act of assigning
labels imposes cognitive constraints; some events will be missed.
Moreover the basic notion of being able to identify unfamiliar ob-
jects may not be satisfied. Nevertheless, we can hypothesize that the
annotation provides an empirical characterization of both – what is
an object, through the objects that are tagged, and what is not an
object, through the regions of the audio that are not tagged as being
objects. The question of whether a generic concept of sound objects
exists will now simply be answered as follows: is it possible to learn
a detector from the data that can detect objects of categories/labels
that are not included in the training data? Without leaving the reader
in suspense, the answer, as we will show later is “yes”.

Post-hoc, we note from the annotated audio and find the follow-
ing operative definitions to hold which follow the lines of Alexe et
al. [19]. We note that the definition of sound objects is complicated
by various factors such as that different audio events can overlap,
and change in audio content can be attributed several factors such
as amplitude, rhythm etc. Yet, similar issues such as occlusion, per-
spective etc. are also faced in computer vision; these are lateral to the
definition of objects themselves. Sound object are generally noted to
have the first two of the following properties and may or may not
satisfy the third property. (a) they have clear onset time (b) they are
acoustically salient – they posses characteristics that distinctly sep-
arate them from what listeners may perceive as background, noise
or silence, and (c) the offset time is clear. The relaxation on offset
time is because we find that the onset of a detected object is always
noticeable to listeners, whereas the offset time may not be distinctly
noted and has poor inter-annotator agreement.

Additional details of the data are in the experimental section.

4. DETECTING SOUND OBJECTS

Studies in computer vision have derived detectors based on saliency
models, and characterizations obtained from the prescribed defini-
tion of objects, to build object detectors. Given the rather more em-
pirical definition we have come up with, we will therefore treat the
problem of sound-object detection one of binary classification, and
attempt to learn models based on objects identified by human anno-
tators. Note, once again, that we are not concerned with a particular
class of sound events; instead we are concerned with the generic con-
cept of sound objects. We would like to confirm that this description
leads to the ability to detect sound objects within a computational
paradigm. Thus we will separate the data we have by label, such that

the labels that are present in the training data are not present in the
test data and vice versa.

We employ a rather simple classification paradigm: the principle
being that it sound objects are indeed distinctive, even a simple clas-
sifier must do a reasonable job of detecting them. We model the char-
acteristics of sound objects using Gaussian Mixture Models(GMM).
We train a background GMM ofM components from a large collec-
tion of audio recording containing both sound objects and non-sound
objects. We then generate two different features using this back-
ground GMM [14]. The first set of features represent the distribution
of the data over the components of background GMM. The second
set of features represent the actual distribution of data over the entire
GMM. Since we aim to capture generic sound-object characteristics,
we keep the number of Gaussian components small, to avoid learn-
ing highly discriminative clusters obtained using a large number of
Gaussians, which might capture characteristics of individual events.

4.1. Probabilistic Feature Vectors

We repesent all audio as sequences of mel-frequency cepstral coef-
ficient (MFCC) vectors, since they are perceptually motivated. The
MFCCs for any recording are represented by d dimensional vector
~xt where t goes from 1 to T . T is the total number of mel-frequency
cepstral coefficients vectors for the given recording. For illustration,
we will view the Gaussians in the GMMs as clusters. Then for each
component i of the background GMM the probability that the data
belonging to the ith cluster is computed as:

P (i) =

T∑
i=1

p(~xt|λi) (1)

where λi collectively represents the mean and covariance parameters
for the ith Gaussian component of the background Gaussian Mixture
Model. Since we are not looking for fixed length audio, instance
normalization for varying lengths for different audio is done as

P (i) =
1

T

T∑
i=1

p(~xt|λi) (2)

M dimensional feature vector ~F is obtained from this where each
element of ~F is equal to P (i). This feature vector ~F captures the
probabilistic distribution of all the mel-frequency cepstral vectors
of the recording over the Gaussian components of the background
GMM. It is similar to the word-frequency histogram representation
used in the bag-of-words representations, but is much more robust
[14] due to soft assignment and the more detailed characterization in
GMMs.

4.2. GMM-MAP features

To obtain a more effective and robust feature representation of sound
objects, we obtain GMMs for each audio recording by adapting the
background GMM. The means of the background GMM are adapted
to each training recording using the maximum-a-posteriori (MAP)
criterion as described in [29]. This is done as follows for ith compo-
nent of the mixture

Pr(i|~xt) =
wip(~xt|λi)
M∑
j=1

p(~xt|λj)

(3)

ni =

T∑
t=1

Pr(i|~xt) (4)



Fig. 1. ROC plots for sound objects detection with different window
sizes

Ei(~x) =
1

ni

T∑
t=1

Pr(i|~xt)~xt (5)

wi is the weight of ith Gaussian component.
Finally the updated means are

~̂µi =
ni

ni + r
Ei(~x) +

r

ni + r
~µi (6)

where ~µi is the mean vector of ith component of the background
GMM and r is a relevance factor. The means of all components are
then appended to form a new vector of M × d dimensions. This
vector is a representative of the distribution of vectors in the audio.
The above two features namely ~F and GMM-MAP features are un-
supervised methods of characterizing acoustic events in audio.

4.3. Classification

We use a random forest classifier in our experiments [30]. It is
method of ensemble learning which builds a “forest” of decision
trees, each node of which is computed using only a random subset of
input variables. The final decision is performed through voting. In a
study by [31] it has proven be among the best classification strategies
.

5. EXPERIMENTS AND RESULTS

We use the TRECVID MED 2011 database in our experiments. A
set of 31 events spanning over 410 audio files from the TRECVID
database is used as our set of sound objects. The labels assigned are
varied, such as crowd cheer, drums, etc. and represent a variety of
types of acoustic saliency. The complete list of all 31 events is not
given here due to space constraints. Each of these 410 audio files
were manually annotated; the part of audio data belonging to the
set of 31 events were instances of sound objects. We divide these
sound objects into two groups, one with 16 randomly chosen events
and another with the remaining 15. Two-way jackknife experiments
were performed, using one set for training and another for test in
each case to get a performance measure over the entire data. Nega-
tive instances for sound objects are obtained from those audio files
in which annotators have not found any of these events. Again we
would like to emphasize here that there are no positive training in-
stances for the set of test events and hence our experiment is generic.

Mel Frequency Cepstral Coefficients (MFCCs) are used as the
raw features for the audio data. 20 dimensional MFCC feature vec-
tors are extracted with different window sizes. The window sizes
considered are 20ms, 30ms, 40ms and 60ms. The window in each

case is moved by 10ms resulting in 50%, 66.66%, 75% and 83.33%
overlap respectively. Experiments are performed using each of these
window sizes separately. In another set of experiments we use delta
MFFCs along with MFCCs resulting in a total of 40 dimensional raw
features.
The background GMM is learned from a completely different set
of audio data which includes both sound objects and background.
The total amount of data for GMM training is slightly more than 10
hours. 4 different GMMs with component size M=64 are learned
corresponding to 4 different window sizes used for MFCCs extrac-
tion. The same setup is used for the case when delta coefficients are
also used. The value of ’r’ in GMM-MAP adaptation is fixed to be
0.5. The number of trees in random forest is set to be 500.
Fig 1(a) shows the miss probability vs. false alarm probability for
different window sizes without using delta coefficients of MFCCs.
Fig 1(b) shows the same values when we use delta coefficients along
with MFCCs in our experiments. The area under the curve (AUC)
and Equal Error Rate (EER) are two characteristics normally used as
single metrics for evaluating ROC plots. Since we are plotting error
curves the area under the curve should be as low as possible. The
EER too must be also be as small as possible. Table 1 shows these
values for different cases.

Window
(ms)

MFCCs MFCCs+Delta
AUC EER AUC EER

20 0.1827 0.259 0.1986 0.271
30 0.2014 0.273 0.2099 0.281
40 0.2007 0.272 0.1887 0.264
60 0.2042 0.283 0.2032 0.283

Table 1. Area Under Curve (AUC) and EER values for ROC curves
in Fig 1

6. DISCUSSIONS AND CONCLUSIONS

Through very simple characterization techniques we are able to
achieve a reasonable performance in detection of sound objects.
Although using different window sizes in the current setup does
not show any remarkable change in the performance we do believe
that since we are dealing with a general concept viz. sound objects
we need to check with different window sizes to see which is best
suited. This might actually be visible in different characterization
techniques. The best performance among all is achieved on window
of 20ms. This might be attributed to the fact that small window will
spread even very short lasting sound objects over multiple frames
and thus help in detecting some signature characteristics. The most
important conclusion drawn from this work is that we can consider
the generic concept of sound objects as a complement to target-
class-driven acoustic event detection. Even though there was no
instance of test acoustic events in training, we are still able to get
a reasonable performance using the very simple strategy shown in
this paper, validating this idea. This might, in turn enable us to build
up vocabularies of sound objects or events for audio annotation – a
process that may in fact mimic how we as humans ourselves gain our
vocabularies. Semantics may be obtained through the similarity be-
tween detected objects and their association with information from
other modalities. This could also be used in hierarchical analyses,
or as a bootstrap for obtaining human labels, to reduce annotation
costs.
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